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ABSTRACT 
 
Gravel road safety is a crucial area of road safety since gravel roads represent a substantial proportion of 
the entire nation’s roadway network. Also, gravel roads pose inherent hazards that are otherwise absent in 
paved roads. Nonetheless, research related to assessing road conditions for county gravel roads has been 
rarely undertaken. The focus of this research study is to develop a systematic method for ascertaining 
gravel road conditions in the state of Wyoming. This research is part of a multi-year study that was 
conducted by the Wyoming Technology Transfer Center (WYT2) at the University of Wyoming to assist 
the Wyoming Department of Transportation (WYDOT) and local agencies in managing, maintaining, and 
optimizing gravel road performance and conditions in the state. The study utilizes field data and 
exploratory and statistical analysis to assess and evaluate the gravel road network performance. The 
established methodologies consider different factors related to the gravel road itself, such as the number 
of fines in the surfacing materials, average daily traffic (ADT), average driving speed, and moisture 
content. In addition, it considers different factors related to the surrounding environment, such as oil 
production rates, annual rainfall, average monthly temperatures, agricultural lands, and households. The 
results of this study will be used in developing cost-effective maintenance strategies that will aid in 
optimizing the Wyoming asset management program. The developed methodologies are intended to 
benefit traffic engineers, decision-makers, and any other stakeholders. 
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1. INTRODUCTION 

1.1 Introduction 

Unpaved roads, whether dirt or gravel, represent roughly 35% of the U.S. roadway network by mileage as 
per the Federal Highway Administration (2012). In Wyoming, local agencies own and manage over 
13,000 miles of gravel roads. These roads formulate 90% of the entire local roads network in the state 
(Huntington & Ksaibati, 2009). Gravel roads satisfy the criteria for low-volume (≤ 2,000 vpd) roads as 
per the American Association of State Highway and Transportation Officials (AASHTO, 2019). Such 
roads pose safety concerns that ought to be alleviated. Gravel roads are maintained regularly to have a 
smooth surface providing an acceptable ride quality; whereas, dilapidated ones are characterized by road 
surface erosion, washboarding, rutting, raveling, potholes, and loose surface material (Aleadelat et al., 
2018). 

Although managing an asset of gravel roads can be a cost-effective preference for many local agencies, 
the amount of generated dust is considered a major flaw of these roads (Fay et al., 2016). Moreover, 
gravel roads in Wyoming are prone to frequent heavy truck traffic due to the various mineral and drilling 
activities. This additional heavy traffic impacts the structural capacity of these roads and increases the 
amount of generated dust enormously (Aleadelat & Ksaibati, 2017). This has led to higher demands from 
counties and local jurisdictions to apply for and receive Congestion Mitigation and Air Quality (CMAQ) 
improvement funds. WYDOT and the Federal Highway Administration are facing a significant increase 
in CMAQ funding applications and are looking for more cost-effective ways to allocate these funds. As a 
result, counties are left incapable of maintaining their roads due to budget constraints. Considering these 
issues, it is important to research and investigate more effective strategies in creating and maintaining 
gravel roads in Wyoming and developing cost-effective strategies to use CMAQ funds where they are 
most needed. 

Generally, researchers were incurious when it came to the management of gravel roads. Researchers were 
concerned more about how to set general guidelines or rules for managing these roads by investing 
minimal efforts (Huntington & Ksaibati, 2011a; Huntington & Ksaibati, 2011b). When it comes to gravel 
road dust, most of the previous work focused on the evaluation and the performance of dust palliatives. 
Currently, there are over 300 commercially available products to abate the different impacts arising from 
gravel road dust. These products vary in terms of performance, efficiency, and economic value. 
Additionally, the majority of these studies strived to introduce a set of guidelines or methodologies to 
select the most appropriate dust palliative (Jones & Surdahl, 2014; Sanders, Quayenortey, & Jorgensen, 
2015; Omane et al., 2017). In addition, there are no specific comprehensive guidelines or methodologies 
available to help local agencies in identifying the best set of gravel roads that are ideal for dust chemical 
treatment projects. Since local agencies are not able to treat all gravel roads under their jurisdictions, a 
methodology undertaking negative environmental impacts, road surface materials, traffic characteristics, 
mineral production, and weather conditions, is required to select gravel roads for chemical treatment 
projects. Such a methodology, in addition to introducing a sort of systemization to the entire process, will 
help decision makers in allocating the available funds efficiently, enhancing the planning process, and 
maximizing the reflected social welfare on the local economy.  

Ultimately, as part of the WYT2/LTAP efforts to develop a gravel roads management system (GRMS), 
this research study developed user-friendly tools, using JavaScript, that implement optimization models 
based on genetic algorithms (GAs). The developed tools will help decision makers and local agencies in 
allocating limited funds efficiently. 
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1.2  Research Objectives 

The study looks to assess road conditions for Wyoming county gravel roads and develop cost-effective 
management strategies to implement with the available funds by undertaking the following objectives:  

1. Help local agencies define the most appropriate treatment type suitable for each gravel road under 
their jurisdiction.  

2. Estimate the cost of applying road treatments, service level, and the potential road conditions with 
or without applying a treatment.  

3. Develop user-friendly tools that will implement an optimization model based on GAs.  
4. Develop tools that will help local agencies in optimizing their budgets by suggesting specific 

roads for maintenance and rehabilitation projects in a way that preserves the overall network 
condition.  

5. Develop a systematic method for ascertaining the level of service (LOS) of gravel roads. To date, 
such a method does not exist in the Highway Capacity Manual (HCM). 

6. Evaluate whether the HSM’s methodology for predicting counts of crashes on rural two-lane 
highways is applicable to gravel roads in Wyoming.  

7. Investigate road condition factors affecting the traffic-generated dust on gravel roads. 

1.3  Expected Outcomes 

In this study, valuable information and data will be provided to decision-makers and legislators in the 
state of Wyoming, including WYDOT and the Federal Highway Administration. These data and the 
information will assist the allocation of the funds. The results of this study can help evaluate the gravel 
road network in the state, identify current practices and, therefore, recommend improvements.  

Accurate detection of dust amounts is very crucial in GRMS. Another expected outcome of this study is 
that it establishes novel methods for automatic detection and classification of dust amounts on gravel 
roads by digital image processing techniques. Such methods can assist local agencies in data collection 
and maintenance planning, as well as help state engineers classify the dust amount on gravel roads more 
efficiently and cost-effectively. The ultimate goal of this study is to develop a more rigorous 
understanding of assessing road conditions for Wyoming county gravel roads and to recommend the most 
efficient mitigation practices. 

1.4  Report Organization 

This report is organized into seven chapters as follows: 

Chapter 1 provides an introduction of the research topic and objectives, the expected outcomes of the 
study, and comprehensive asset management systems in Wyoming. 

Chapter 2 discusses the various literature related to gravel roads, factors affecting their performance, and 
maintenance and management. 

Chapter 3 provides a summary of the developed methodologies in this research study. It discusses the 
different data collection steps followed to conduct these experimental studies. A flow chart of the overall 
report organization is included in this chapter. 

Chapter 4 discusses the first objective of this study. The chapter explains the data collection conducted 
and illustrates how the newly developed tools can help local agencies. Also, this chapter describes the 
analysis conducted and the results obtained from analyzing the collected data. 
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Chapter 5 includes detailed discussions of the methodologies and results of the second objective. This 
includes a discussion of the road sections tested, testing procedures, and types of data analyses conducted. 

Chapter 6 concludes this study by summarizing and highlighting the results and conclusions reached in 
the study. Chapter 6 also includes recommendations developed based on the findings and provides 
insights for future research work to be done to better understand dust behavior on gravel roads.  
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2. LITERATURE REVIEW 

2.1  Introduction 

Gravel roads are considered one of the critical constructed transportation infrastructures. There are 
thousands of miles of gravel roads in the United States, especially in the Midwest and Mountain West 
states. As an example, Wyoming has different mineral extraction and drilling activities utilizing more 
than 13,000 miles of local gravel roads. These unpaved roads are used daily by ranchers, loggers, 
industrial users, and recreational area visitors (Aleadelat & Ksaibati, 2018). Many of these gravel roads 
have acceptable riding qualities. Conversely, some of them have very low riding and safety scores. 
Improving and maintaining these gravel roads is legally the responsibility of the various local agencies in 
the state. In this chapter, a literature review is conducted to determine key topics related to the 
management and maintenance of gravel roads. 

2.2  Background 

The WYT2/LTAP is currently in the process of developing a GRMS in Wyoming. One of the major 
components of this new GRMS is developing comprehensive methodologies for maintenance and 
rehabilitation (M&R) activities. To support the new methodologies, this study established a 
comprehensive review of the literature related to the management of gravel roads.  

2.2.1  Dust Generation 

Gravel roads require extensive maintenance and rehabilitation. That is because of the dynamic behavior 
of gravel road conditions. This study is aimed at investigating road condition factors affecting the traffic-
generated dust on gravel roads. The quality of gravel roads depends greatly on the composition of the 
surface, namely the mixture of gravel, sand, and clay. In most states in the nation, the mileages of 
unpaved roads exceed those of paved roads. There are over two million miles of gravel roads 
crisscrossing the United States. These roads are mostly located throughout industrial and rural areas 
(Albatayneh et al., 2019). However, if these roads are not well maintained, deterioration will occur, 
leading to several defects and dust generation. Dust emanating from gravel road surfaces affects human 
health and the environment. It is also a safety concern that ought to be alleviated.  

Inhaling dust particulates irritates the respiratory system and may result in diseases. Airborne dust coats 
crops and vegetation hindering their growth. Sand, gravel, and particulates drift into waterways and 
contribute to sedimentation. This pollutes the aquatic life’s ecosystem. Settling dust is unsightly and 
requires intensive care around homes and businesses. Dust clouds reduce visibility creating hazardous 
driving conditions. Also, airborne dust particles may damage vehicle windshields, paint, headlights, and 
suspension systems. The menacing effects of dust emanations may be mitigated. By examining the factors 
affecting gravel road dust generation, roadway engineers are able to put forth better-informed decisions 
regarding maintenance plans. These will improve driving surface conditions, protect the health of vehicle 
occupants, improve motor vehicle safety, minimize pollution, and extend the service life of the gravel 
roads while optimizing budgets. 

Gravel road performances vary depending on several factors, such as the roadway surface composition, 
sub-surface soil conditions, topography, weather conditions, traffic volumes, drainage, stabilization 
practices, and maintenance practices (Henning et al., 2008; Linard 2010; Linard, 2008). Typically, gravel 
roads require frequent maintenance, unlike paved roads. In Wyoming, local agencies are diligently 
maintaining around 12,000 miles of gravel roads. Traffic volumes, the gravel road network’s needs, and 
available funding factor heavily into gravel road maintenance plans. The long-term maintenance costs of 
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gravel roads are costly due to the high rate at which such roads deteriorate. In general, maintaining gravel 
roads is considered a cost-effective alternative compared with paved roads. However, traffic-generated 
dust is considered one of the major drawbacks of gravel roads. Therefore, the CMAQ improvement 
program is used by local agencies and state DOTs to enhance gravel road performance in order to reduce 
the amount of traffic-generated dust using chemical dust control treatments regularly. Also, many other 
maintenance activities for gravel roads are performed, such as blading, stabilization, drainage 
maintenance, and reshaping. 

2.2.2  Dust Generation and Machine Learning Techniques 

Until recently, using machine learning with TensorFlow has been applied in several computer science and 
medical applications. However, only a few attempts have been made to use this supervised learning 
technique in transportation engineering applications. This is the first study to undertake the 
implementation of TensorFlow in GRMSs. In this section, several applications of using machine learning 
with TensorFlow are discussed. In the past decade, machine learning has been widely used in various 
applications and is still one of the most ambiguous AI sub-fields (Angelova et al., 2015; Ba et al., 2014; 
Frome et al. 2013; Gonzalez-Dominguez et al., 2015; Karpathy et al., 2014; Vinyals et al. 2015; and 
Szegedy et al., 2015). In general, machine learning techniques can basically be divided into two main 
groups: supervised learning and unsupervised learning. Supervised learning methods are trained using a 
labeled input data; whereas, unsupervised learning methods are trained without using labels to the input 
data (Libbrecht & Noble, 2015). However, some real applications and problems would have labeled and 
unlabeled input datasets. In this case, the learning technique would be called semi supervised learning 
(Chapelle et al., 2009).  

In this study, TensorFlow, which is a supervised learning technique, was used to develop an image 
classifier. TensorFlow is a system used for operating large-scale machine learning applications (Abadi et 
al., 2016). This system is a developed version of the DistBelief framework to train deep neural networks 
(Dean et al., 2012). One of the main concepts of deep learning is to extract features from data (Bengio et 
al., 2013; Bengio, 2009). In this study, one of the deep learning neural network models, the Inception-v3 
model, was utilized in TensorFlow to extract and classify image features. This model was found to have 
significant effects on increasing the deep learning neural networks’ performance and efficiency (Szegedy 
et al., 2015). For instance, the Inception-v3 model was utilized in TensorFlow for developing an image 
classifier to classify flower images based on three features: texture, shape, and color. The results showed 
that utilizing the Inception-v3 model can significantly increase the precision of flower classification (Xia 
et al., 2017). 

Generally, the TensorFlow framework has been utilized in pavement management systems (PMS) in 
many applications and mainly for pavement distress detection. In 2017, a pavement crack detection tool 
was developed using TensorFlow. This tool detects and classifies pavement cracks effectively and offers 
information to be used for maintenance purposes (Wang & Hu, 2017). A recent study was conducted to 
predict alligator cracking, or fatigue cracking, using the TensorFlow framework and then comparing the 
results with the fatigue cracking transfer function. The results showed that the developed model has 
significantly better performance than the fatigue cracking transfer function (Gong et al., 2019). Also, a 
study was conducted using TensorFlow for detecting pavement distress across the pavement surface 
(cracks, loose material, deformations, and others). The results showed the developed model can 
successfully classify road surface distresses with better performance (Nie & Wang, 2018). More recently, 
a study emerged with the concept of using TensorFlow to detect and recognize road objects. The study 
showed that TensorFlow can detect and recognize road objects accurately (Warrier & Sathish, 2018). 
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2.2.3  Gravel Roads Ride Quality Through an Android-Based Smartphone 

Gravel road assessment methods are mostly manual and dependent on visual surveys or actual 
measurements of road surface conditions (Huntington & Ksaibati, 2015). The U.S. Army Corps of 
Engineers assessment system (USACE) is considered to be one of the earliest efforts to develop a 
measurable consistent index for gravel roads (Huntington & Ksaibati, 2015; Walker, 1989). This index is 
known as the Unsurfaced Road Condition Index (URCI) and depends on the actual measurement of the 
level and extent of each distress related to gravel roads. Then, using a deduct value for each distress type 
(e.g., potholes and corrugations), an overall URCI, on a scale from 1 to 100, can be calculated (Eaton & 
Beaucham, 1992). In another study conducted by Chamorro et al. in Chile, a new Gravel Roads Condition 
Index (UPCI) was developed (Chamorro et al., 2009). Through linear regression equations, a correlation 
was established between objective distress measures (e.g., rutting depth) and a given subjective rating 
(UPCI). The developed equations gave the UPCI ratings the required level of objectivity, which may 
improve data quality and reduce required survey times (Chamorro et al., 2009). Nonetheless, any trial of 
developing objective-based indices is still impractical for local agencies. Estimating these types of indices 
requires substantial resources to objectively measure each type of distress, especially when dealing with 
large networks. In addition, manually measuring the level and extent of each distress still implies some 
degree of subjectivity. Therefore, these indices are more practical for research purposes than road 
management (Huntington & Ksaibati, 2015). This encourages local agencies to deal with more practical 
assessment methods, such as visual surveys.  

Currently, there are many available gravel road visual assessment systems, such as the South African 
Council for Scientific and Industrial Research (CSIR) system, the Federal Highway Administration 
(FHWA) Central Federal Lands Highway Division method, and the Wisconsin Pavement Surface 
Evaluation and Rating (PASER) system. The PASER rating system is considered to be the most popular 
rating system used for gravel road evaluation in the United States (Huntington and Ksaibati, 2015). The 
PASER system rates the overall gravel road condition on a scale from 1 (failed) to 5 (excellent) by 
incorporating distresses related to the following aspects of the road:  

• Crown  
• Drainage  
• Gravel layer  
• Surface deformation: 
– Washboard  
– Potholes  
– Ruts  

• Surface defects:  
– Dust  
– Loose aggregate  

 
In the PASER system, the gravel road is evaluated from a decision-maker’s viewpoint (Huntington et al., 
2017). This explains the inclusion of gravel properties and drainage conditions within the rating system. 
However, the PASER’s short scale limits the rater’s ability to make consistent judgments. In such short 
scales, the rater tends to make judgments closer to the endpoints (error of leniency). On other occasions, 
raters avoid making extreme judgments, or what is known as the central tendency error (Nair & Hudson, 
1986). Therefore, the WYT2/LTAP modified the current PASER system to a different rating system 
(RQRG) that uses an expanded scale from 1 to 10. This expanded rating scale is intended to reduce the 
possibility of errors within the rating process. Moreover, the modified scale reflects the perceptions of 
road users regarding their comfort while driving over a specific road segment (Huntington and Ksaibati, 
2015). Therefore, RQRG is affected more by surface deformation modes such as potholes, washboards, 
and rutting. These types of deformations are considered to be the main failure mode for gravel roads 
(Huntington and Ksaibati, 2016). Thus, the RQRG system has an advantage over the PASER system by 
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its ability to alleviate possible rating errors and represent the actual road conditions at the same time, 
which leads to a better decision-making process (Huntington and Ksaibati, 2015).  

A few studies have tried to introduce a sort of platform for automating the gravel road assessment process 
(Brown et al., 2003). For example, the Forest Engineering Research Institute of Canada (FERIC) 
developed the Opti-Grade road management system. This system depends on accelerometers and a global 
positioning system (GPS) to detect and calculate the roughness of the Canadian forest roads. It was found 
that this system helped improve the effectiveness of maintenance works and reduced their costs (Brown et 
al., 2003). In another indirect approach, Zhang and Elaksher used an unmanned aerial vehicle (UAV) 
based imaging system to identify the different surface distresses present in gravel roads. Using aerial 
imagery, a perceived three-dimensional (3D) surface of gravel roads was created. Using image processing 
algorithms, they were then able to identify the extent and severity of surface distresses. The derived 
measurements from the perceived 3D road surface were in good agreement with the actual measurements 
(14). In 2015, Alhasan et al. used a terrestrial laser scanner to quantify the roughness of gravel roads 
(Zhang & Elaksher, 2012). The acquired data points using the laser scanner were used to construct 3D 
representation maps for the road surface. Then, using the quarter car model, Fast Fourier transform (FFT), 
and statistical analysis, they were able to estimate the international roughness index (IRI) values, locate 
corrugations within road segments, and infer some information related to surface material characteristics 
(e.g., gradation). Regarding the use of smartphones in evaluating road conditions, most of the previous 
work was related to paved roads, in particular, estimating the IRI and locating anomalies within the 
pavement surface (Mohan et al., 2008). In conclusion, previous efforts made to automate the data 
collection for gravel roads are still impractical for application and require an analysis level that may 
supersede the capabilities of small local agencies. In addition, these methods are not able to control the 
highly changeable conditions of gravel roads. Therefore, an investigation is required to evaluate the 
ability of smartphones in predicting gravel road conditions. The proposed approach is anticipated, in 
addition to reducing the cost, to deal with the dynamic conditions of gravel roads and enhance the quality 
of the collected data through the automation process. 

2.2.4  Performance Prediction Models for Gravel Roads 

The Wyoming Technology Transfer Center (WYT2/LTAP) is currently in the process of developing a 
GRMS. Such a GRMS is intended to provide feasible practices to help local agencies deal with the 
different challenges associated with maintaining gravel roads in the state. One of the main goals of this 
project is to develop an optimization tool that can help decision-makers at the local level in managing 
limited budgets and in selecting gravel roads for M&R projects. The tool, which has been developed, 
implements an optimization model that works on maximizing the overall gravel road network conditions 
considering traffic volumes and subject to limited budgets. It is well known that the estimation of a gravel 
road potential service life is one of the integral parts of any maintenance assignment process (Mannisto et 
al., 1990, Huntington & Ksaibati, 2007, Chamorro & Tighe, 2011). Therefore, this research study aims to 
develop performance prediction models for gravel roads in Wyoming. Such prediction equations provide 
a mathematical representation of how a gravel road in Wyoming may deteriorate over time.  

In addition to the general lack of the available GRMSs that are tailored to suit the needs of small local 
agencies, research efforts are more designated toward solving specific issues related to managing gravel 
roads within the premise of the developing agency (Mannisto et al., 1990, World Bank. 2018; Giummarra, 
G. 2000; Burger et al., 2007; van Zyl et al., 2007; Chamorro & Tighe, 2009; Huntington & Ksaibati, 
2011a; Chamorro & Tighe, 2015). This explains the importance of establishing specific rules, guidelines, 
and models that are designated for Wyoming gravel roads rather than following the generic practices 
available in the literature. 
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Currently, WYT2/ LTAP utilizes inexpensive, less labor-intensive windshield surveys to evaluate gravel 
road conditions. Most of these surveys are modifications to the PASER guide developed by the 
Wisconsin Transportation Information Center (Walker, 1989; Huntington & Ksaibati, 2015). Two of 
these modifications are the Ride Quality Rating Guide (RQRG) and the Gravel Roads Rating Standards 
(GRRS). The RQRG reflects the perceptions of road users with regard to the driving quality of the gravel 
road. The GRRS describes the condition of a gravel road by providing a specific rating for each distress 
or deterioration mode, such as potholes, rutting, washboards, and loose aggregate (Huntington & 
Ksaibati, 2015). With gravel roads, different maintenance practices are assigned according to the severity 
and extent of every distress available within the road surface. For example, poor pothole conditions 
require heavy blading to maintain the road while poor loose aggregate requires chemical treatment. 
Hence, it is necessary to have a specific performance model that describes the behavior of any gravel road 
in the means of every distress. These models will be implemented in the optimization process to select the 
best maintenance practices and to assign cost-effective budgets. Predicted performance models will be 
developed using Markov Chains (MC) (Hassan et al., 2015). The implementation of this probabilistic 
modeling approach has been widely used in the management of paved roads as it is flexible and requires 
minimal historical data to develop performance models. This probabilistic approach requires at least two 
successive periods of road conditions data. In cases where historical data are not available, expert 
opinions can be used to develop the performance models (Costello et al., 2005; De Melo e Silva et al., 
2000; Uchwat and MacLeod, 2012; Abaza, 2016; Hassan et al., 2017; Osorio-Lird et al., 2017). 

Gravel roads are dynamic as their conditions change dramatically based on different traffic and weather 
conditions. Also, these kinds of roads normally serve very low traffic volumes, which explains some of 
the indifference when it comes to gravel road management (Huntington & Ksaibati, 2007; Huntington & 
Ksaibati, 2011a; Huntington & Ksaibati, 2015). To predict the performance of these roads, the World 
Bank developed software such as the Roads Economic Decisions Model, the Deterioration of Unpaved 
Roads (DETOUR) Model, Highway Development and Management Model (HDM-4), and the Roads 
Economic Decision Model (RED) (Chamorro and Tighe, 2011; World Bank, 2018; van Zyl et al., 2007; 
Archondo-Callao, 2001). These models are used to run economic evaluations related to road investment 
projects. However, these models require a lengthy input list that may supersede the capabilities of small 
local agencies. These inputs are related to surface roughness, terrain type, traffic conditions, crashes, 
fatalities, injuries, speed, and geometric features (World Bank, 2018; van Zyl et al., 2007). Also, they are 
more appropriate for project-level analysis rather than network-level analysis. Moreover, the extensive 
outputs may overthrow the small operating agencies. Nonetheless, a few studies report the 
implementation of MC to predict the performance of gravel roads (Mannisto, et al., 1990; Chamorro & 
Tighe, 2011). However, the models or methodologies are still exclusive and cannot be generalized for use 
by developing agencies. For example, the models by Chamorro and Tighe depend on specific indices like 
the Unpaved Roads Condition Index (UPCI), which was developed solely to evaluate gravel roads in 
Chile (Chamorro & Tighe, 2011). In addition, it is apparent that local agencies in Chile use other deep 
stabilization methods for gravel roads different from the ones followed in the United States, which 
explains the long service life of these roads (e.g., four years). Deep stabilization processes, such as the 
Full Depth Reclamation (FDR) method, include deeply mixing chemical stabilizers into the roadbed. In 
such methods, roadbed materials are deeply crushed, blended, and mixed with chemical stabilizers to 
achieve a more stable road surface that can serve traffic for multiple years (Bushman et al., 2005). 

This research study utilizes gravel road condition data collected from Laramie County, located in the 
southeastern part of Wyoming, to develop the performance prediction models. The following sections 
describe the data collection efforts and the application of MC to develop these predictions. The prediction 
models developed here will be used solely to establish a large-scale optimization model applicable to the 
gravel road network for every county in Wyoming. The reader is referred to Hassan et al., 2015 for more 
extensive details of the methodology behind the MC and its implementation in road management (Hassan 
et al., 2015). This methodology involves characterization of the states, setting the initial state vector and 
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start condition, investigating the number of cycles, and obtaining the transition probability matrix (TPM). 
This phase describes each of these steps as well as the data collection process and the development of one 
performance prediction model using the MC approach.  

2.2.5  Optimization Techniques for Selecting Gravel Roads Maintenance 
 Strategies 

Researchers have been mainly concerned about setting general rules or guidelines for managing gravel 
roads with minimum effort. This has resulted in a general lack of GRMSs that are suitable for small local 
agencies (Huntington & Ksaibati, 2011; World Bank, 2018; Mannisto & Tapio, 1990; Giummarra, 2000; 
Burger et al., 2007; Van Zyl et al., 1989; Chamorro & Tighe, 2009; Huntington & Ksaibati, 2011). 
Additionally, researchers’ efforts were more directed toward solving specific issues related to managing 
gravel roads within the jurisdiction of a particular agency (Huntington & Ksaibati, 2011). For example, in 
Finland, an analytical optimization method was developed by Mannisto and Tapio in 1990 (Mannisto & 
Tapio, 1990). This optimization method is aimed at identifying the most appropriate maintenance 
strategies for gravel roads. The developed optimization model depends on semi-Markovian performance 
models to predict the condition of gravel roads. The linear optimization method was used to minimize the 
societal costs associated with these roads. It was found that the developed model can be used to allocate 
funds among the different road maintaining districts and suggesting roads for maintenance and 
rehabilitation works.  

Later, the World Bank developed several software programs, such as the Roads Economic Decisions 
model, Deterioration of Unpaved Roads model (DETOUR), Highway Development and Management 
Model (HDM-4), and Roads Economic Decision model (RED). These models are used to run economic 
evaluations related to road investment projects. However, these models require a lengthy list of inputs that 
may exceed the capabilities of small local agencies, and they are more appropriate for project-level 
analysis rather than network-level analysis. Moreover, the extensive outputs may exceed the requirements 
of small operating agencies (World Bank, 2018; Archondo-Callao, 1999). In Canada, the Forest 
Engineering Research Institute (FERIC) developed the Opti-Grade road management system. Opti-Grade 
utilizes accelerometers and geographic information systems (GIS) to estimate the roughness of forest 
roads. The system was used to schedule routine blading works. It was found that this system was helpful 
in improving the effectiveness of maintenance works and reducing their costs (Brown, 2003). In another 
study, two algorithms for scheduling routine maintenance of gravel roads were developed in South 
Africa’s Western Cape Province. The first algorithm worked on maximizing the overall network ride 
quality. The second algorithm worked on minimizing the total transportation costs. The focus of both 
algorithms was to set the sequence at which the roads should be bladed. It was found that the second 
algorithm was more efficient in improving the overall network roughness and reducing the total 
transportation costs (Burger et al., 2007).  

In conclusion, previous efforts at developing GRMS are not generic and are tailored more for specific 
conditions. Every agency tends to set rules and guidelines for managing its own roads and to satisfy its 
particular needs. This creates the necessity to develop comprehensive guidelines and rules appropriate to 
manage gravel roads in Wyoming. As a result, WY2/LTAP conducted a pilot study to set the main rules 
for building a GRMS in Wyoming. In addition to addressing the inadequacy of the currently available 
GRMS, this pilot study resulted in many recommendations, guidelines, and some practical methodologies 
for maintaining gravel roads in Wyoming (Huntington & Ksaibati, 2011; Albatayneh et al., 2019; 
Huntington et al., 2013; Huntington & Ksaibati, 2015). The outcomes of this pilot study and other efforts 
by WYT2/LTAP are gathered in this research study to formulate the optimization model and develop the 
tool. 
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Introducing artificial intelligence (AI) to pavement management systems (PMS) has created a leap in the 
process. AI can substitute for existing management systems or enormously increase their efficiency. 
Genetic algorithms (GA), in addition to artificial neural networks (ANN) and fuzzy systems, are 
considered valuable tools for answering many questions related to the PMS, such as what should be done, 
when, how, and where (Sundin & BrabanLedoux, 2001). GAs were first introduced to pavement 
management by Fwa et al. in 1994, where they solved a network-level optimization problem related to 
maintenance planning. GAs later become a basic solution for various optimization problems related to 
roads management (Fwa et al., 1994b; Ferreira et al., 2002; Morcous & Lounis, 2005). However, most of 
the previous work was related to either a project or a network level optimization and mainly was applied 
to primarily paved roads. Comprehensive online research yielded only one study that implemented GA’s 
to solve optimization problems related to rural roads (Mathew & Isaac, 2014). However, the 
implementation of the aforementioned study focuses only on paved roads. This present study introduces a 
large-scale optimization model, based on GA, which can be applied to the entire gravel road network in 
Wyoming. The developed model will help decision-makers and local agencies in selecting roads for 
chemical treatment projects. The following subsections describe the process of building the optimization 
model using GAs.  

2.2.6  Gravel Roads’ Level of Service 

Numerous efforts have been made to develop and update systematic methods to manage gravel roads. For 
instance, various manuals provide guidance for designing, constructing, and managing gravel roads. They 
include the Low-Volume Roads Engineering: Best Management Practices Field Guide, US Army Corps 
of Engineers (USACE’s) assessment system, Gravel Roads Maintenance and Design Manual, Rural Road 
Design, Maintenance, and Rehabilitation Guide, AASHTO Guidelines for Geometric Design of Very 
Low-Volume Local Roads (ADT≤400 vpd), Pennsylvania’s Environmentally Sensitive Maintenance for 
Dirt and Gravel Roads and the RQRG. The development of the USACE’s assessment system was one of 
the first efforts made to establish measurable indices pertaining to gravel roads (Aljarrah & Masad, 2020; 
Eaton & Beaucham, 1992; Huntington & Ksaibati, 2015; Walker, 1989). However, none of the 
aforementioned manuals provide a systematic method for evaluating the gravel roads’ LOS.  

The RQRG is used for assessing gravel road ride quality. It is developed based on the Wisconsin 
Transportation Information Center’s PASER gravel road manual. This guide is designed to assess the 
quality of the road’s surface as perceived by the road users. However, the RQRG is limited to the 
assessment of ride quality and surface conditions but not traffic operations. Thus, it is not adequate for a 
comprehensive LOS evaluation. Furthermore, a few studies were conducted to evaluate gravel roads’ 
performance using one or two criteria. However, in most of these studies, subjective assessment methods 
were employed. For instance, a visual rating system was developed to visually evaluate gravel roads 
based on individuals’ perspectives. The PASER system is considered the most common visual assessment 
system used for gravel road evaluation in the United States (Huntington & Ksaibati, 2015; Huntington et 
al., 2013). Yet, several studies paved the way to objectively assess gravel roads by evaluating traffic-
generated dust and its effect on the environment. Also, the evaluation of gravel roads’ ride quality using 
smartphone applications was previously undertaken (Abu Daoud et al., 2021; Aleadelat et al., 2018b). 
Nevertheless, an extensive methodology for gauging gravel roads’ LOS in terms of traffic operations, ride 
quality, and dust levels are still lacking. This research addresses this issue by proposing the gravel road 
LOS methodology. 
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2.2.7  Chapter Summary 

This chapter included a literature review of existing knowledge and common practices related to gravel 
roads. A review of dust generation on gravel roads suggested that traffic is the main generator of dust 
from gravel roads. In addition, this chapter also discussed different measurement tools used to measure 
dust emission rates.  

Local agencies and state departments of transportation (DOTs) select various approaches to determine the 
performance of their gravel road networks. The majority of these approaches are based on either practical 
experience (engineering judgment) or reference manuals. Yet, there is a lack of extensive research on the 
operating characteristics of gravel roads let alone a robust methodology used to determine the LOS. This 
research study is aimed at addressing this knowledge gap.  
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3. METHODOLOGY 

3.1  Introduction 

This chapter summarizes the techniques and methods used in this research study. Figure 3.1 outlines the 
organization of this report. This research focused on assessing road conditions for Wyoming county 
gravel roads and collecting real-time data and then analyzing these data using machine learning, AI, and 
different techniques. Actual field data were collected from several counties around Wyoming and mainly 
from Laramie county. Descriptive and exploratory analyses were conducted to examine trends and 
behaviors of gravel roads. Statistical analysis was also conducted to validate the developed 
methodologies. The main goal of this research study is to assess road conditions for Wyoming county 
gravel roads and develop a more comprehensive understanding of gravel road performance. This study 
was divided into two main objectives, which are organized as follows:  

 

 
Figure 3.1  Schematic diagram for research methodology 
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3.2  Objective 1: Smartphone-Based Detection for Gravel Roads 
 Distress 

Objective 1 was to continue the efforts of the WYT2/LTAP office to develop and implement smartphone 
applications and technologies to assess gravel road conditions and performance. This included the 
continuation of the data collection process, where gravel roads from various counties around Wyoming 
were tested. Testing, as described in Chapter 4, included measuring dust emitted from gravel roads via 
Dustometer and smartphone application; it also included the collection of temperature and vehicle speed, 
as well as locations. A descriptive analysis was conducted to explore dust generation trends from gravel 
roads. 

3.3  Objective 2: Methodologies for Selecting Gravel Roads 
 Maintenance Strategies 

As part of the efforts by the Wyoming Technology Transfer Center (WYT2/LTAP) to develop a gravel 
roads management system (GRMS) in Wyoming, Objective 2 was to develop user-friendly tools, using 
JavaScript and other programming languages, which implement an optimization model based on genetic 
algorithms (GA). The developed tool will help decision-makers and local agencies manage gravel roads 
efficiently. Using these tools, decision-makers will be able to identify the most appropriate treatment type 
for each road based on service level, estimated project costs, predicted road conditions, and whether or 
not to fund a project. The optimization models aim to maximize the overall condition of the gravel road 
network subject to the average daily traffic (ADT) on each road. The developed tools can be applied to 
large-scale optimization problems (i.e., gravel road network). The tools operate with minimal data 
requirements that are in line with procedures regularly followed at these agencies. In addition to having 
an engineered outcome, these tools can help local agencies allocate their limited available funds 
efficiently, thereby enhancing the planning process, maximizing the social welfare of the local economy, 
and promoting a sense of general satisfaction within the local community. A case study using data from 
Laramie County was used to develop these tools. Different types of analyses were conducted to carefully 
validate the performance of the developed tools. Both exploratory and statistical analyses were conducted. 
Chapter 5 includes comprehensive explanations of the analyses conducted and the results obtained. 

3.4  Chapter Summary 

This chapter described the organization followed throughout this report. The first objective of this study 
was to develop and implement smartphone applications and technologies to assess the gravel road 
conditions and performance in Wyoming. The second objective was to develop user-friendly tools, using 
JavaScript and other programming languages, which implement an optimization model based on GAs. 
The developed tool will help decision-makers and local agencies manage gravel roads efficiently. 
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4. SMARTPHONE-BASED DETECTION FOR GRAVEL ROADS 
DISTRESS  

4.1  Introduction 

Daily traffic on arid gravel roads can easily generate dust. Dust emitted from gravel roads creates several 
problems, such as aggravated asthma, breathing difficulties, reduced crop yields, and even death. 
Therefore, local agencies tend to track the dust amounts on gravel roads to maintain them in good 
condition. Accurate detection of dust amounts is very crucial in the GRMS. Data collection is considered 
one of the main challenges facing local agencies due to budget constraints. This research study establishes 
novel methods for automatic recognition of gravel road distress, such as dust amounts on gravel roads and 
washboarding. Dustometer and field measurements, supported by statistical analysis, demonstrate that the 
proposed algorithms achieve outstanding classification accuracy. Hence, the proposed algorithms are a 
promising alternative to assist local agencies in data collection and maintenance planning.  

4.2  Data Collection 

Gravel roads are relatively inexpensive and easy to build because of the materials used in the construction 
process. However, gravel roads have greater demand for maintenance and rehabilitation than paved roads. 
The Wyoming Technology Transfer Center (WYT2/LTAP) is implementing new management systems, 
such as GRMS. This new system can provide decision-makers and local agencies with cost-effective 
solutions. One of these managing solutions is to overcome the high cost of data collection. Data 
collection, which is a systematic process of collecting and gathering information on specifically targeted 
variables, is considered a time-consuming and expensive step in any management system. The WYT2 
/LTAP is developing many cost-effective approaches to collect gravel road condition data. One of these 
approaches is to use the smartphone application to provide information about the gravel road conditions 
by classifying gravel road distress using newly developed image processing algorithms.  

4.3  Methodology 

This section presents an overview of the classification algorithms used in this research study. This 
methodology is divided into four major steps: (1) Experiment design; (2) Classification algorithms; (3) 
Dustometer measurement; and (4) Validation. The four steps are briefly described in the following 
subsections. 

4.3.1  Experiment Design 

In this research study, an Android smartphone was used with a preinstalled Roadroid Application; a 
Samsung Galaxy S5 was used to take images from the rear windshield of the testing vehicle. A 
smartphone windshield mount with a long arm clamp and double clip, strong suction cup was used in 
order to keep the smartphone steady without obscuring the camera lens. Images were taken every 100 m 
segments (GPS linked) and then uploaded to a web service. Image analysis was then performed on the 
survey images via the classification algorithms. Gravel roads (1 mile each) in Wyoming were selected. 
Each gravel road was chosen based on its condition levels. 

For dust measurements, four phases were conducted. First, a portable dust collection system called 
“Dustometer” was used to classify and validate the results from the developed algorithm. Second, visual 
classification (evaluation) of the dust on the selected roads was done based on the Ride Quality Rating 
Guide (RQRG) in order to assess and compare the results. Third, a simple dust classification algorithm 
was developed to provide information about the dust on gravel roads. This image processing algorithm is 
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a (.NET) class library used to extract information and data from images. Fourth, one of the machine 
learning frameworks (TensorFlow) was used to build an image classifier. This classifier can classify the 
dust amounts on gravel roads into four major levels (none, low, medium, and high). This classifier is 
based on the aspect of optimizing one of the deep neural network models, the Inception-v3 model. This 
model contains a pretrained package used to extract and recognize dust patterns from dust images 
automatically. In this phase, a dataset of 4,000 images of gravel roads was collected. For training, 80% of 
the dataset was used, and 20% was used for testing. 

For the corrugation (washboard) measurements, more than 4,000 images, showing different severity 
levels of corrugation, were collected from gravel roads in order to build and develop this image classifier 
for gravel roads corrugation. For the purpose of developing a corrugation image classifier, the collected 
images were divided into two groups; 80% of the images were used to train the model, where the 
remaining 20% were used to test it. The data preparation phase started with the appropriate visualization 
of the collected images by seeking trends and patterns among the images. Then, the images were sorted 
randomly. After that, the images were cropped to have an appropriate and suitable size for the Inception-
v3 model and its ImageNet database. Afterward, the Inception-v3 model was chosen to build the gravel 
roads corrugation classifier. 

4.3.2  Dustometer Measurement 

The Dustometer was used to classify and validate the results from the developed algorithm. This device 
consists of a portable electric generator, a suction pump, a metal box, and #200 size glass fiber filter 
paper. Figure 4-1 shows the 2001 Suburban Chevy, which was used in this study, as well as the 
arrangement of the smartphone and the Dustometer.  

 

 
Figure 4.1  Dustometer and Smartphone Arrangement 

In addition to the collected dust measurements using the Dustometer, the WYT2/LTAP provided the 
necessary historical data to classify the dust measurement into three major classes: high, medium, and 
low. Figure 4.2 shows the visual depiction of the historical Dustometer measurement data distribution. As 
seen from the figure, the data range anywhere from 0.05 (g/mile) to approximately 0.9 (g/mile). However, 
the skew of the distribution indicates most of the data seem to fall in the lower part of this plot. More 
specifically, most of the gravel roads have relatively low dust amounts. Using the available data, data-
driven threshold values were assigned based on the 25th and 75th percentiles of the boxplot to classify the 
dust amount on gravel roads. It was assigned that the low dust level is less than 0.2, the medium dust level 
is from 0.2 to 0.5, and the high dust level is greater than 0.5. 
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Figure 4.2  Boxplot Distribution of the Dust Measurements 

4.3.3 Classification Algorithm 

4.3.3.1 Dust 

Simple Dust Classification Algorithm 

The main objective of this phase was to develop and validate the simple dust classification algorithm for 
classifying the dust amount on gravel roads. The simple dust classification algorithm was developed to 
provide information about the dust on gravel roads. The image processing algorithm is a (.NET) class 
library used to extract information and data from images. AForge.NET is used for image processing 
operations. Figure 4.3 shows the architecture of the image analysis.  

Dust amount classification is a combination of color filtering, binarization, smoothing, and feature 
extraction to extract areas of the image containing dust, and comparing the number of dust pixels to non-
dust-pixels to choose from one of the dust amount classes. All of these steps can be determined by 
performing the five steps of AForge.NET filters.  

Binary images may contain various imperfections. Therefore, a five-step process of AForge.NET filters 
and operations are performed to remove imperfections and smooth the image before applying the SDCA. 
Figure 4.4 clearly illustrates the five steps: preprocessing, global thresholding, remove noise and smooth, 
feature extraction, and classification. For example, in the remove noise and smooth step, a morphological 
closing, which is a collection of non-linear operations, was performed to remove the noise and the texture. 
Moreover, in the feature extraction step, the biggest blob extraction was performed to isolate a region of a 
digital image that has constant properties (blobs), in that it tends to extract regions in the image that differ 
in properties such as color or brightness. When it comes to classifying the image, the simple dust 
classification algorithm has pre-defined scores of dust/color. For example, an image with 10,000 pixels 
(100×100 pixels) has either white pixels (dust particles) or black (something else). If it scores 4,000 
pixels as white pixels, it will give a score of 40 ([4,000/10,000] × 100), which will have a dust value of 4 
indicating high dust. The dust score value cannot exceed 100 since it is the number of pixels in percent 
the algorithm defines as having dust in the analyzed part of the image. 



17 
 

 
Figure 4.3  Simple Dust Classification Algorithm Architecture 
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Figure 4.4  Simple Dust Classification Algorithm Basic Five Steps 
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Machine Learning: Tensorflow  

The objective of this study is to build a TensorFlow image classifier with a transfer learning process using 
a pre-trained Inception-v3 model. This classifier is trained to detect the dust on gravel roads and then 
classify them into four major levels. This classifier is considered a function that takes some data as inputs 
(dust images) and assigns a label (dust levels) to it as outputs. This is done by an automatic technique 
called supervised learning. Generally speaking, this technique begins with the following few standard 
steps: 

• Step 1 starts with examples (images) of the problem that is being solved.  
• Step 2 is to use the input images to train the classifier using pre-trained models and learning 

algorithms.  
• Step 3 is finding patterns in the trained images and then predicting the dust levels. 
 

Figure 4.5 shows a canonical data model (CDM) of the three steps in this study. This figure shows the 
data entities and their relationships in the developed machine learning workflow. Also, Python version 3.6 
was used in this study to develop this image classifier by implementing the Inception-v3 model in 
TensorFlow.  

 
Figure 4.5  Canonical Data Model of The Developed Machine Learning Workflow 

The quality and quantity of the collected images (inputs) will directly determine how well the classifier 
can be. In this phase, more than 4,000 images of gravel road dust from Wyoming and Gävleborg County, 
Sweden, were collected representing the four dust levels (none, low, medium, and high). A smartphone 
with a preinstalled Android application called Roadroid was used to collect the dust images. This 
application uses the built-in GPS unit in smartphones to capture the images at set intervals of 100 m. 

In this study, the dataset was divided into two partitions (training and testing) to prepare them for use in 
the developed classifier. For training, 80% of the data were used, while the remaining 20% were used for 
testing. Generally, it is good practice to remove highly correlated images from the training set to avoid 
doubling the count of the image features. Therefore, the process starts with pertinent visualization of the 
collected images by looking for trends, patterns, correlations, and, most importantly, data imbalances. 
Then, 800 images were manually classified for each dust level with a total number of images of 3,200 to 
ensure that the developed classifier is unbiased. Afterward, the data were randomly sorted to remove the 



20 
 

effect of ordering on the learning process. Subsequently, the size of the input image was cropped to 299 × 
299 pixels, which is the region of interest, to be compatible with the ImageNet database, where the 
Inception-v3 model was created and trained. The next step in this study was to choose the training model. 
In the era of developing computer vision techniques, there are many training models that researchers and 
scientists have created over the years. Some were for numerical data, others were for text-based data or 
music, and some were well suited for image data. In this study, one of the newly advanced pre-trained 
models, called the Inception-v3 model, was selected to retrain the dust images and build the classifier. 

TensorFlow, which is one of the most popular machine learning libraries, was created by the Google-
Brain team for creating deep learning models that use multilayer neural networks. TensorFlow can be 
used for both production and research applications, but in particular, it targets the training of deep neural 
networks. TensorFlow has exquisitely crafted features that allow the developers and researchers to create 
classifiers with the ability to solve many problems that have been reserved for humans in a more efficient 
and cost-effective technique. In this classifier, a Python 3.6 code was used to train and develop the model. 
The following steps describe the procedures that were used to install, import, and develop the TensorFlow 
algorithm in Python 3.6: 

Import the input dataset and then split it into training and testing data.  
1. Set the hyperparameters, or tuning knobs values. Such hyperparameters include the number of 

training steps or the number of iterations and the learning rates. In our case, 4,000 training steps 
and 0.01 learning rates were used.  

2. Initialize the model’s weights (W) and biases (B).  
3. Create name-scope {tf.name_scope} to help organize nodes in the graph visualizer Tensorboard. 

In this study, three scopes are created:  
a. A scope to implement the logistic regression model and create summary operations to 

help visualize the distributions of the weights and biases.  
b. A scope to create the cross-entropy function cost_function to help minimize the errors 

during training.  
c. A scope to create the optimization function called train to automatically improve the 

model during the training. 
4. Start training after initializing all of the created variables. 

In machine learning, the learnable parameter weight is used to find evidence of the existence of a 
particular pattern in an image. The weights are the probabilities that affect how data flows in the model 
and represent the strength of the connection between the layers. The weights are updated continuously 
during training so that the results converge to the final solution (optimum solution). In this classifier, the 
weights are randomly initialized based on one of the common initialization methods for a deep neural 
network to guarantee that the search space is properly explored during the training (Glorot & Bengio, 
2010). Therefore, to initialize weights randomly, a Xavier initialization technique {xavier_initializer()} 
was used. This command automatically initializes weights from a standard normal distribution (Feng et 
al., 2019). By this, the gradients, a machine learning function to optimize the weights, will flow from top 
to bottom without any problems such as warding off the weights from changing their values (vanishing 
gradient).  

In TensorFlow, the developer can adjust, change, and control several parameters to increase the predictive 
power. These parameters are called hyperparameters. Such parameters are (1) learning rates, which define 
how fast the weights are updated, and (2) the number of hidden layers in the model. For instance, if the 
learning rate is too quick, the model might skip the optimal solution, and if the learning rate is too slow, 
the model might require too many iterations to converge to the optimum results. In this study, a 0.01 
learning rate was used.  
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Using TensorFlow would have many advantages over other AI tools such as data visualization and 
flexibility. These two are considered the main two advantages that make this tool one of the leading in 
this field. Visualizing what happens inside the code using graphs and plots would help researchers and 
developers thoroughly understand the code. Hence, for instance, they can visualize the data to debug and 
improve the model performance to achieve more accurate predictions. All of that can be carried out using 
one of the TensorFlow web applications called Tensorboard. This built-in visualizer enables researchers 
and developers to visualize the training parameters, metrics, hyperparameters, or any statistics of neural 
networks. Using this tool, many figures can be generated, such as the computational structure of the 
developed classifier, accuracy plot, and cross-entropy plot. Figure 4.6 shows a visual representation of the 
developed classifier structure for the various operations and information in the model. This model 
structure can be used for determining whether the developed model is appropriate or not by zooming, 
panning, and expanding the model’s elements. That is, the depiction of the model can be visualized from 
different layers of abstraction. Therefore, the dependencies between the different operations in the model 
can be easily understood to perform debugging and find how the model could be improved. As seen from 
the model structure, the model confirms that the data have a meaningful tensor flow based on the arrows 
between the performed operations. The model also confirms that the transformations of the dataset are 
applied and executed correctly by tracking these metrics through the training process as part of this graph. 

 
Figure 4.6  The Computational Structure of the Developed Classifier 

Machine Learning: Inception-v3 Model 

Training a high-performing deep neural network model from scratch requires extensive data collection 
efforts and computing power. Therefore, retraining a previously constructed deep neural network model is 
considered an efficient technique for saving time and reducing data collection costs since it requires less 
training data. This is conducted by a process called transfer learning. This process involves applying the 
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information learned from a previous training session (problem) to a new training session by making small 
changes to the last layers (bottleneck layers) that are responsible for tuning and the final classification in 
the deep neural network model. Figure 4.7 shows the general architecture of the deep neural network 
model with a transfer learning process. The green color indicates the transfer training process in the final 
layer.  

 
Figure 4.7  Basic Architecture of A Deep Neural Network Model With A Transfer Learning Process 

The Inception-v3 model is considered one of the convolutional neural network (CNN) architectures for 
image classification. It was first introduced by Szegedy et al. in 2016. This model contains more than 25 
million fitted parameters and was trained by one of the top hardware experts in the industry. The CNN 
models are black boxes that construct image features. The Inception-v3 model uses the image feature 
extraction module that was trained on ImageNet. The ImageNet is an accessible database for high-
resolution images designed for developers and researchers in the field of image processing. Generally, the 
Inception-v3 model consists of two main parts: (1) the convolutional neural network to extract image 
features; and (2) the image classification with the softmax and the fully connected layers. The softmax 
layer is used as the final layer of a neural network-based classifier to provide normalized class likelihoods 
(probabilities) for the outputs (dust levels).  

In our case, the developed classifier is built to classify dust images. Nevertheless, the Inception-v3 model 
was not trained on dust images, and therefore, the transfer learning process is required. Thus, a transfer 
learning process is applied to the last two layers of the model. In computer vision, especially image 
classification, customized softmax and fully connected layers are considered essential components for 
successfully classifying images with high accuracy. For instance, in fully connected layers, each node on 
the neural network is fully connected to the previous layer. Therefore, customized softmax and fully 
connected layers were built to be used to classify dust images. In TensorFlow, the number of neurons in 
the fully connected layer ranges based on the targeted classification accuracy (Krizhevsky et al., 2012; 
Ciresan et al., 2011). In this study, several network architectures were trained (hyperparameters 
optimization) using a different number of neurons, and then cross-validation was performed to measure 
the network performance. 
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As a result, the number of neurons was chosen to be 1,024. Generally, this customization helps the model 
to learn more about some image-specific features. Figure 4.8 shows the schematic diagram of the 
customized Inception-v3 model that was used in this study. 

 
Figure 4.8  Schematic Diagram of The Customized Inception-V3 Model 

4.3.3.2 Corrugation 

The main purpose of this phase is to validate a recently developed image classifier detecting the 
corrugation (washboard) on gravel roads and determining its severity levels. This image classifier was 
built and developed by Roadroid using the TensorFlow framework. A supervised neural network learning 
technique was used to develop this image classifier. Developing a model using the supervised neural 
network technique goes through a few general steps: collecting and labeling a sufficient size set of images 
to form the training set, choosing the learning function structure and algorithm, and then testing and 
evaluating the designed algorithm in predicting the image feature.  

The main advantage of this research work is to provide a smartphone automated detector for gravel roads 
corrugation. The tested gravel road corrugation detector can be used in data collection to replace both the 
traditional visual inspection methods and the automated methods that need a lot of equipment. Based on 
that, this classifier will enhance the data collection process and provide decision-makers and local 
agencies with a cost-effective data collection tool. Finally, the developed image classifier is a new and 
necessary step in building a holistic and integrated gravel roads data collection method based on 
smartphones in collecting all gravel road data.  

4.3.4  Validation 

To validate the developed algorithms for determining the dust amount on gravel roads, several gravel 
roads in Wyoming were selected to represent the levels of dust defined earlier. Figure 4.9 shows an 
example of some of the locations for the included roads in Laramie County, Wyoming. A Dustometer 
device was used to collect the dust (g/mile) on the tested gravel roads. Since the study was done on 
unpaved roads (gravel roads), the testing vehicle was operated at a constant speed of 40 mph in dry 
weather conditions to ensure the maximum amount of dust to be generated.  

In this research study, a visual assessment of the quality of the gravel road was conducted based on the 
RQRG. This guide is based on the Wisconsin Transportation Information Center’s PASER gravel manual 
to assess the quality of the gravel road’s surface as observed by the road users. Table 4.1 describes the 



24 
 

RQRG scale and how roads are ranked according to that ranking.  

 
Figure 4.9  Example of The Tested Gravel Roads In Laramie County, Wyoming 

Table 4.1  Ride Quality Rating Guide (RQRG) 

 

4.3.4.1 One-way Analysis of Variance (ANOVA) 

Generally, an ANOVA test checks if the experiment results are statistically significant. The one-way 
analysis of variance (ANOVA) is an omnibus test statistic with one independent variable used to 
determine if there are any statistically significant differences between the means of two or more groups 
using the F-distribution. Equation 4-1 shows the null hypothesis, which is accepted when the one-way 
ANOVA returns statistically insignificant results.  

H0: µ1 =  µ2 =  µ3 =  … . . =  µk 
Equation 4-1 Null Hypothesis 

where: µ: Mean of the group; k: Number of groups. 
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This step critically examines the significance of the difference between the overall Dustometer rating and 
the overall algorithm rating.  For validation purposes, 30 gravel roads were selected to represent the dust 
classes. Figure 4.10 shows the percent of each dust amount class on these gravel roads using the current 
study’s Dustometer data. Statistical analysis was performed using (α = 0.05) at a 95% confidence interval. 
Based on the ANOVA analysis, the difference of the dust amount classification between the overall rating 
of Dustometer (g/mile) and the overall rating from the dust classification algorithm is statistically 
insignificant (𝑡𝑡1,58 = 0.105; P-value= 0.747). Table 4.2 shows a summary of the basic statistics. 

 
Figure 4.10  Percent of Each Dust Amount Class in the Included Roads 

Table 4.2  One-way ANOVA Analysis 

 
 
4.3.4.2 Confusion Matrix 

In machine learning and, specifically, classification applications, a confusion matrix is a technique used to 
summarize the classification performance. This technique provides a summary of prediction results on the 
developed classification application based on the counts (numbers) of correct and incorrect predictions 
(Veropoulos et al., 1999). Therefore, prediction accuracy was calculated based on the accuracy-score 
equation (Eq 2). In this classification application, 83% was found to be the prediction accuracy of this 
image classifier. Considering the level of accuracy that is sufficient for the gravel road management 
systems, this prediction accuracy is considered a breakthrough performance. Table 4.3 shows the 
generated confusion matrix. 
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Equation 4-2 Accuracy-Score Equation  

Table 4.3  Confusion Matrix of The Developed Image Classifier 

 
 
4.3.4.3 Economic Evaluation 

Nowadays, smartphone technologies are taking the lead toward providing engineers and users with the 
most cost-effective methods and solutions to identify road quality. Economic evaluation is the process of 
measuring the cost-effectiveness of these technologies. Generally, using the developed algorithm will 
provide engineers and decision-makers with cost-effective road surveys compared with the traditional 
data collection methods. Table 4.4 shows the major differences between the Dustometer and the 
developed algorithm. As can be seen, the cost and the time associated with dust collection using the 
Dustometer are among the major challenges facing local agencies. The Dustometer data collection 
process needs at least two persons in order to set up the device, drive the testing vehicle, and change the 
filters; whereas, using the developed image processing method requires only one person with a 
smartphone to run the test. Furthermore, the number of road kilometers that can be tested is also 
considered as a limitation of using the Dustometer device. These limitations and challenges associated 
with using the Dustometer method can be avoided by utilizing the newly developed image processing 
algorithm introduced in this study. 
 
Table 4.4 Major Differences Between Dustometer and Smartphone App 

 

4.3.4.4 Tensorflow & Inception-v3 model  

In this section, the performance of the developed classifier is evaluated. Performance evaluation is an 
essential component of machine learning. To evaluate the performance, we generated a classification 
accuracy plot based on the accuracy-score equation [Eq. (2)]. The results showed that this classifier has a 
72% prediction accuracy. This prediction accuracy is considered a breakthrough for gravel road 
management systems.  
 
Also in Tensorboard, prediction accuracy and cross-entropy plots were generated. Figure 4.11 shows the 
maximum accuracy that this classifier achieved. As seen from this figure, at zero steps, the classifier has 
approximately 52% prediction accuracy, which indicates that the classifier has a good start. The final 
prediction accuracy that this classifier reached is 72%. Yet, the highest accuracy achieved is 73%. The 
orange line in Figure 8 denotes the training dataset, and the blue line denotes the test set. The cross-
entropy loss plot, which is sometimes named a logistic loss function plot, was generated to measure the 
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performance of the classification model. Generally, the cross-entropy loss decreases as the predictions 
converge to the actual labels. 

             
Figure 4.11  The Maximum Prediction Accuracy of the Image Classifier 

Therefore, minimizing the model log loss is tantamount to maximizing the prediction accuracy of the 
classifier. Thus, this plot also quantifies the prediction accuracy and the performance of this classifier. As 
seen from Figure 4.12, there is a gentle downward slope toward the right, which indicates that the model 
loss progressively decreases as the prediction accuracy improves.  

  
Figure 4.12  The Cross-Entropy Plot of the Image Classifier   
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In TensorFlow, histogram plots are used to describe the clarity of the model. Figure 4.13 shows a 3D 
mean histogram plot for the weights in the developed classifier’s model at each step. This figure confirms 
that the model has accurate hyperparameters and weights initialization. It shows that the model has 
approximately a constant rate of development over time. The histogram slices are fragmented into steps. 
For instance, the darker histogram slices represent older steps while lighter histogram slices represent the 
latest steps. In addition, at 4,000 steps, the model has a value of 0.00299, which is near zero indicating 
that changing the inputs will not significantly improve predictive power. Therefore, it is not efficient to 
continue tuning and retraining the model. Also, this confirms that using 4,000 steps was sufficient without 
overfitting the data. Furthermore, Figure 4.14 shows the progress of the image classifier’s biases. As can 
be seen, there is a variation in the standard deviation over time. 

 
Figure 4.13  The Development of the Image Classifier Weights Over 4,000 Steps 
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Figure 4.14  The Development of the Image Classifier Biases Over 4,000 Steps 

4.4  Chapter Summary 

The general research approach of this chapter was to develop image classifiers. These classifiers were 
mainly developed based on the implementation of the Inception-v3 model in TensorFlow. This study 
created artificial intelligence classification tools for detecting and classifying corrugation and traffic-
generated dust from gravel roads automatically, where the automatic detection of traffic-generated dust is 
still one of the most challenging tasks for local agencies due to heterogeneity characteristic of the factors 
related to gravel roads. This study demonstrated, for the first time, that TensorFlow can be used to 
develop an image classifier for detecting gravel road distress. 
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5. METHODOLOGIES FOR SELECTING GRAVEL ROADS 
MAINTENANCE STRATEGIES 

5.1 Introduction 

In Wyoming, local agencies own and manage over 13,000 miles of gravel roads. These roads formulate 
90% of the entire local roads network in the state (Huntington & Ksaibati, 2009). Even though managing 
an asset of gravel roads can be a cost-effective preference for many local agencies, the amount of 
generated dust is considered a major flaw of these roads (Fay et al., 2016). Moreover, gravel roads in 
Wyoming are prone to frequent heavy truck traffic due to the various mineral and drilling activities. This 
additional heavy traffic impacts the structural capacity of these roads and increases the amount of 
generated dust enormously (Aleadelat & Ksaibati, 2017). Generally, researchers were incurious when it 
came to the management of gravel roads. Researchers were concerned more about how to set general 
guidelines or rules for managing these roads by investing minimal efforts (Mannisto & Tapio, 1990; 
Giummarra, 2000; Burger et al., 2007). For example, there are no specific comprehensive guidelines or 
methodologies available to help local agencies identify the best set of gravel roads that are ideal for dust 
treatment projects. Since local agencies are not able to treat all gravel roads under their jurisdictions, new 
methodologies, undertaking several factors, are required to select gravel roads for chemical treatment 
projects. Such a methodology, in addition to introducing a sort of systemization to the entire process, will 
help decision-makers in allocating the available funds efficiently, enhancing the planning process, and 
maximizing the reflected social welfare on the local economy.  

As part of the WYT2/LTAP efforts to develop a gravel roads management system (GRMS), this research 
study developed multiple user-friendly tools, using mainly JavaScript, to implement optimization models 
based on genetic algorithms (GA). The developed tools will help decision-makers and local agencies in 
allocating the limited funds efficiently by reducing the overall amount of road distress over the entire 
gravel road network. The implemented optimization models consider different factors related to the road 
itself, such as the number of fines, average daily traffic (ADT), average driving speed, and moisture 
content. In addition, it considers other factors related to the surrounding environment, like mineral 
extraction activities, annual rainfall, average monthly temperatures, agricultural lands, and households. 
The developed tools can be simply operated by uploading a spreadsheet representing the required input 
data for the competing roads, which makes it more feasible to be used by small local agencies with 
limited expertise and resources. 

5.2  Methodology 

5.2.1  An Optimization Tool to Select Gravel Roads for Dust Chemical Treatment 
 Projects Using Genetic Algorithms 

5.2.1.1 Genetic Algorithm Outline 

Genetic algorithms are robust search algorithms that simulate natural selection and evolution inspired by 
Darwinian evolutionary theory (Shiffman, 2012). Basically, GAs search for a set of solutions that meet a 
prior defined criterion (i.e., objective function) from an initial pool of solutions. Then, the found set of 
solutions is used to generate an offspring, which has better characteristics related to the objective 
function, depicting the natural selection process. The generation process will simulate the main three 
natural selection elements, which are heredity, variation, and selection (Fwa et al., 1994; Shiffman, 2012). 
The generation process will continue in the same fashion until the search process reaches an optimum 
solution for the defined objective function. This process is controlled by a predefined stopping criterion. 
For example, the process can be stopped when there is a smaller magnitude of improvement in the new 
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offspring or if the algorithm has reached a certain predefined number of iterations. The general outlines of 
the GA adopted in this study are described as follows: 

1. This study is based on a key assumption that chemically treating a gravel road will entirely 
eliminate dust by the next day after the treatment.  

2. An objective function is identified to maximize the inclusive amount of reduced dust over the 
entire gravel road network and to maximize the environmental benefits gained from suppressing 
dust.  

3. A binary coding system of 1’s for treatment projects and 0’s for non-treatment projects is 
followed to formulate chromosomes (i.e., potential solutions) with a length that is equal to the 
total number of roads competing for funds. Figure 5.1 shows a coding sample for a typical 
chromosome of 18 roads.  

4. An initial pool of solutions (i.e., chromosomes) is randomly created to start the search and the 
natural selection process.  

5. Each potential solution is evaluated in the means of its feasibility in accordance with the objective 
function. This process is called “Fitness Evaluation.” For example, roads with a higher potential 
for generating dust will have higher fitness.  

6. An offspring is created simulating the natural selection process.  
7. The entire process is repeated until no or small change in fitness is reached within a defined time 

interval. 

 
Figure 5.1  Coding Sample For A Set of Competing Projects (Chromosome) 

5.2.1.2 Fitness evaluation  

For every potential solution, the amount of dust that might be generated from each road is predicted using 
the EPA dust prediction equation (Equation 5-1) (EPA, 2006). The main goal is to select solutions with 
roads that have the highest potential of generating dust.  
 

 
Equation 5-1  EPA Dust Prediction Equation 

Where:  
• E is the amount of generated dust (lbs)  
• fines is the percentage of material passing sieve No. 200 (%)  
• speed is the average driving speed over a gravel road (mph)  
• moisture is the surface material water content (%)  
• ADT is the average daily traffic reported on the road (Vpd)  
• L is the total length of a road considered for treatment (miles)  
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Then, for each chromosome, the fitness is evaluated according to the following formula: 

 
Equation 5-2  Fitness Evaluation 

where  
• n is the total number of roads that are competing for chemical treatment projects;  
• Oil is the oil production ratio of the county from the state production (i.e., to account for the 

mineral extraction activities at a specific region), and  
• B/C is the benefit-to-cost ratio of treating a certain gravel road.  

The B/C is used to account for the type of surrounding lands (i.e., agricultural lands or households) and 
calculated according to Equation 5-3. This equation is developed after incorporating the environmental 
damage costs related to gravel road dust. According to a previous study conducted by the WYT2/LTAP, 
the damage costs are $912/mile/year for the impacts on human health and $1,490/mile/year for the 
changes in crops yield. The impacts on livestock are minor and are neglected in this study (Aleadelat & 
Ksaibati, 2017). Accordingly, roads with more agricultural lands or households will have a higher weight. 
Then, ‘a’ and ‘b’ are introduced to the equation as weighting factors. These weighting factors will provide 
decision-makers with the ability, according to their discretion, to set higher weights to favor one of the 
two factors. It is well established that counties that have more oil production tend to receive more funds. 
 

 
Equation 5-3  B/C Equation  

where:  
• AgLength is the total length of agricultural land on both sides of the road (miles). 
• HH is the number of households that fall within a 984-ft. buffer on both sides of the road. 

According to (Aleadelat & Ksaibati, 2017), the effect of dust will reach up to 300 m (984 ft.) 
downwind of a road.  

• CT is the approximate cost of applying chemical dust treatment ($/mile).  

Since the roulette wheel selection method is adapted in the used GA, the actual fitness values are 
normalized using Equation 5-4. Where j is the total number of chromosomes in each generation and NF is 
the normalized fitness for each chromosome in the generation. This gives chromosomes with higher 
fitness a higher probability of being selected in the evolution process. Moreover, a uniform crossover 
approach is adopted to create offspring or new generations from previous chromosomes with high 
normalized fitness. 

 
Equation 5-4  The Actual Fitness Values 
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5.2.1.3 Objective functions and constraints handling 

The optimization problem examined in this study deals with a single objective function that maximizes 
the inclusive amount of reduced dust over the entire gravel road network and the environmental benefits 
gained from suppressing dust. There are two constraints in this optimization problem. The first constraint 
is the total assigned budget. The second constraint is that any county submitting an application for CMAQ 
funds must receive some money. The optimization problem is summarized in the following equation: 

 
Equation 5-5  Optimization Problem 

Where m is the total number of submitted gravel roads in a specific county. To handle infeasible solutions 
that have total costs which exceed the assigned budget or solutions that deny any county from funding, an 
adaptive penalty function is used according to Equation 5-6. This function uses the ratio between the 
actual cost of treating the selected projects and the total cost of treating the entire network to penalize the 
infeasible solutions. This way, fitness is linearly modified according to how far a solution is from a 
feasible one, which preserves the good features during the natural selection process. The same penalty 
function is used to penalize solutions that deny funding to any county. 

 
Equation 5-6  Adaptive Penalty Function 

5.2.1.4 Incorporating Weather Conditions 

Weather conditions, especially rainfall and average temperatures, are one of the most important rational 
factors related to dust emissions. Additionally, using the actual water content at the road surface (see 
Equation 5-1) might be misrepresentative or misleading during the optimization process. The actual 
surface water content determined through lab testing is prone to variations, even for the same road, due to 
daily changes in weather or traffic conditions. Thus, approximations for the actual water content during 
the dry season (i.e., summer) are used. These approximations are estimated using the linear reservoir 
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concept applied to every county separately. The variation of the amount of water in the soil (ds/dt) can be 
calculated using Equation 5-7 (Yoo et al., 1998). 

 
Equation 5-7  The Variation of the Amount of Water In the Soil 

The input represents the amount of rainfall and the output represents the loss due to evapotranspiration 
and surface runoff. The amount of evapotranspiration can be approximated using the Blaney–Criddle 
formula (Equation 5-8) (Brouwer & Heibloem, 1986). The rational method can be used to estimate the 
surface runoff (Equation 5-4) (UDFCD, 2017). The loss due to deep percolation is discarded for 
simplification purposes. 

 
Equation 5-8  Blaney–Criddle formula 

 
Equation 5-9  Peak Rate of Runoff (m3/day) 

Where:  
• ETo is the average evapotranspiration rate for a period of a month (mm/day);  
• Tmean is the mean daily temperature (Celsius);  
• p is the mean daily percentage of annual daytime hours;  
• Q is the peak rate of runoff (m3/day);  
• C is the runoff coefficient—a non-dimensional coefficient;  
• I is the average intensity of rainfall (m/day);  
• A is the catchment area (m2).  

The average regular meteorological data are obtained from the U.S. Climate Data website. Then, using a 
standard value for a gravel road dry density, which is 110 lb/ft3 (1762 kg/m3), an approximation for 
surface water content is calculated for each specific county. This way, moisture content will be a 
significant factor when comparing roads from different counties only. Figure 5.2 shows a map that 
represents the different water content estimations for all counties in Wyoming. 

To confirm the reasonability of these water content estimations, Figure 5.3 shows a plot for the estimated 
and the actual water content measured at the site for some of the counties in Wyoming. It can be noticed 
that there is a reasonable agreement between both the estimated and the measured water contents. 

Finally, all parts of this research methodology are put together using JavaScript and Hypertext Markup 
Language (HTML) to build an optimization tool that can be easily used by decision-makers and local 
agencies. The tool will be a webpage that can be hosted on the WYT2/LTAP website and be accessible to 
the public. This will keep the annotated programming code available for everyone for future 
modifications, enhancement, and even criticism. Figure 5.4 shows a screenshot of the initial version of the 
developed optimization tool.  
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Figure 5.2  Water Content Estimation Map 

 
Figure 5.3  Estimated vs. Measured On-Site Water Content for Some Counties In Wyoming 
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Figure 5.4  A Screenshot for the Developed Optimization Tool 

To run this tool, local agencies need to prepare a comma-separated values (CSV) sheet with the required 
parameters and upload it using this tool. In addition, some of the parameters related to the GA should be 
inputted. By trial and error, it is found that a mutation rate of 0.05 and a population size that is equal to 
the number of competing projects can yield the best results. However, any user should operate the tool 
with different parameters to cope with the stochastic nature of the GA. It is well known that higher 
mutation rates work well with smaller population sizes and vice versa (Haupt, 2000). Figure 5.5 shows a 
sample CSV sheet that can be used to run the tool. However, the sequence of the variables must be 
preserved as shown in Figure 5.5 (i.e., road name, ADT, fines %, etc.) for the tool to run correctly. For 
simplicity, a coding system is adapted to refer to the different counties. After running the tool, the 
optimization results can be displayed in a tabular format or in a histogram that displays the distribution of 
CMAQ funds among the different counties. Also, the results can be saved and downloaded directly in the 
same CSV format for further analysis. 
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Figure 5.5  Sample CSV Sheet for Running the Tool 

5.2.1.5 Case Study 

To validate the established optimization model associated with the developed tool, WYDOT CMAQ 
program officials provided the WYT2/LTAP with CMAQ funding applications and recommendations for 
the 2016 and 2017 fiscal years. Table 5.1 shows a summary of the proposed CMAQ projects. These data 
are inferred from the actually submitted applications and after matching the data with the actual 
geographical information system (GIS) maps available for gravel roads. This may result in reduced 
accuracy or errors for some of the obtained data compared with the actual data submitted by counties. 

From Table 5.1, it can be noticed that CMAQ funds can cover only around 65% of the total requests by 
counties each year. This shows the severe competition for CMAQ funds each year by the different 
counties.  
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Table 5.1  A Summary for the Submitted CMAQ Funding Applications 

 

To run the tool and to perform the optimization, oil production rates for each county are obtained from the 
Wyoming Oil and Gas Conservation Commission (WOGCC). Google Earth maps and Wyoming 
agricultural land GIS maps are used to obtain the length of agricultural lands and the number of 
households adjacent to each road. Since the submitted CMAQ applications lack any ADT, fines, or speed 
data, several approximation approaches are adapted. For example, regression and logistic models 
developed at the WYT2/LTAP are used to predict the ADT data on the proposed gravel roads (Apronti et 
al., 2016). The output of these ADT prediction models is presented in GIS maps, available at the 
WYT2/LTAP website, for all gravel roads in Wyoming. Additionally, soil data obtained from the web 
soil survey (WSS) application are used to estimate the amount of fines (i.e., passing sieve No. 200) for a 
specific region according to the parent rock data (USSDA) (NRCS, 2009). This might be a very generic 
approach. However, the lack of any available data or resources makes it a feasible option, at least at this 
stage, to validate the established optimization model. The obtained data reflect the in situ fines content, 
which may give a reasonable representation of the nature of soil in every county. Table 5.2 shows some of 
the estimated fines content based on the available parent rock data for some Wyoming counties.  

Table 5.2  Approximate Fines Content (%) Based on Parent Rock Data for CMAQ Counties 

 

Regarding average driving speed, there are no available data for gravel roads that can be related to driving 
speed. Furthermore, the street viewer of Google Maps is not available for such rural areas to inspect the 
posted speed limits. CMAQ roads mostly serve mineral/oil activities and they are expected to be in good 
driving condition most of the time. Hence, an assumption of 40 mph for the average driving speed is 
made for these roads. Nonetheless, actual data related to such roads are recommended to reflect the actual 
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conditions and to provide more realistic prioritization within the proposed network. Additional research is 
recommended to validate these assumptions after local agencies begin the implementation of the proposed 
model and tools. 

For both 2016 and 2017 fiscal years, the optimization results were obtained after running the tool using a 
budget of $2 million, a cost of treatment that equals $5,000 per mile, 100 as the initial population size, 
0.05 as the mutation rate, and 2 minutes without improvement as the stopping criterion. Different 
optimization scenarios are proposed to show decision-makers how the different factors can influence the 
funding distribution and counties receiving funding. These scenarios are applied for both fiscal years 
2016 and 2017. Table 5.3 shows the different optimization scenarios included in this case study.  

Table 5.3  Different Optimization Scenarios 

 
 
Figure 5.6 shows the optimization results for the 2016 fiscal year compared with the actual assigned funds 
by WYDOT. It can be noticed that different optimization scenarios allocate more funds for specific 
counties. For example, scenarios 1 and 3 allocate more funds to the high oil-producing counties like 
Campbell and Crook. However, Converse County (a high oil-producing county) received fewer funds as it 
submitted only one road for chemical treatment and it was fully funded. The same applies to Carbon 
County. Scenarios 2 and 4 allocate more funds to counties like Johnson, Lincoln, and Sheridan. These 
counties submitted roads that are located nearby residential areas or agricultural lands. Hence, they have 
more environmental damage due to gravel road dust, which explains their high funding opportunities 
according to these scenarios. Scenarios 5 and 6 appear to give the most balanced funding distributions 
among the different counties. These scenarios allocate funds to both high oil-producing counties and 
counties with high environmental impacts. Some counties like Johnson and Crook are not significantly 
affected by the different scenarios as their submitted roads have more environmental impacts, and these 
counties have reasonable oil production rates as well.  
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Figure 5.6  Optimization Results for the 2016 Fiscal Year 

Figure 5.7 shows the optimization results for the 2017 fiscal year. The same trend noticed earlier in 
Figure 5.6 applies here. However, more counties submitted gravel roads for CMAQ funding. For 
example, Laramie County submitted roads that fall within household or agricultural land proximities and 
have a reasonably high oil production. Hence, it does not get affected significantly by the different 
scenarios. 

In 2017, Campbell County submitted roads with high agricultural lands and households. Thus, Campbell 
County still gets a good share of funds even with scenarios that favor the environmental impacts, which 
contradicts what was noticed in 2016. Crook and Johnson Counties are still holding their positions in the 
comparison by submitting roads associated with high environmental impacts in addition to their 
reasonable oil production rates. Furthermore, an association between the amount of possible dust, 
households, and agricultural lands is noticeable among the different counties. More people and 
agricultural lands mean more traffic, which leads to more dust and more environmental impacts. On one 
hand, it can be concluded that counties with high oil production rates tend to submit roads that might be 
closer to oil production wells, which explain the low environmental damage costs (i.e., B/C ratios) 
associated with these roads. On the other hand, counties with lower oil production rates tend to submit 
roads that are within household and agricultural land proximities. Therefore, decision-makers should 
select the most appropriate scenario by weighting the different factors at hand. In other words, decision-
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makers may favor reducing the impacts resulting from the different mineral extraction activities, 
increasing the benefits gained by abating the environmental damages, or even both at the same time. This 
may require counties to reassess their road selection strategies for CMAQ projects. Hence, the importance 
of having a clear systematic process within an engineering basis can be appreciated. Actually, having a 
prior clear understanding of the funding procedures by counties can enhance the funding allocation 
process, increase the reflected welfare on the local economy, and imply general satisfaction among the 
different competing counties. 

 
Figure 5.7  Optimization Results for the 2017 Fiscal Year 

5.2.2  Developing an Optimization Tool for Selecting Gravel Roads Maintenance 
 Strategies Using a Genetic Algorithm 

This research study combines the outcomes of previous work on gravel roads conducted at the 
WYT2/LTAP into a useful optimization tool that can be easily used by local agencies in Wyoming. The 
main goal of this tool is to help local agencies define the most appropriate treatment type suitable for each 
gravel road under their jurisdiction. Additionally, the cost of applying such treatments, service level, and 
the potential road condition with or without applying a treatment will be estimated. This tool will help 
local agencies optimize their budgets by suggesting specific roads for maintenance and rehabilitation 
projects in a way that preserves the overall network condition. The following subsections describe this 
process. 
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5.2.2.1 Previous Work by WYT2/LTAP 

Previous efforts by WYT2/LTAP resulted in the development of a stepwise algorithm for selecting the 
most appropriate treatment for any gravel road. This stepwise algorithm is shown in Figure 5.8.  

 
Figure 5.8  WYT2/LTAP Algorithm for Selecting the Best Maintenance Practice 

(Huntington & Ksaibati, 2011) 

According to this algorithm, an agency must first assign a specific service level for each gravel road. The 
assigned service levels are based on traffic volume and average road width as follows: 

• Very high: ADT greater than 400 vehicles per day (vpd) with a top width greater than 28 ft. 
• High: ADT of 151–400 vpd with a top width of 23–27.5 ft.  
• Medium: ADT of 51–150 vpd with a top width of 18–22.5 ft.  
• Low: ADT of 16–50 vpd with a top width of 13– 17.5 ft.  
• Very low: ADT of 5–15 vpd with a top width of 9– 12.5 ft.  
• None: ADT less than 5 vpd with a top width less than 8.5 ft. 
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The different distresses of the road surface should then be evaluated according to the Gravel Roads Rating 
Standards (GRRS) manual. This also includes evaluating dust, cross-section, and drainage conditions. 
Each road should be rated for the overall ride quality in accordance with the Ride Quality Rating Guide 
(RQRG) manual. Both manuals represent inexpensive windshield surveys used regularly by local 
agencies in Wyoming to evaluate the conditions of their gravel roads. 

The RQRG and the GRRS are modifications of the Pavement Surface Evaluation and Rating (PASER) 
system. The RQRG system rates gravel roads based on ride quality on a scale from 1 (failed) to 10 
(excellent). The distresses included in the GRRS and their scale of rating are shown in Figure 5.9. For all 
conditions, a higher rating means a better condition. Both surveys were used to evaluate gravel roads in 
this study.  

 
Figure 5.9  GRRS Distresses and their Scale of Rating 

The defined service level and the different distress ratings are combined and used together to select a 
suitable treatment for each distress type, as shown in Table 5.4. For each road, a treatment type is selected 
according to its service level and distress condition. The most expensive treatment among all the required 
treatments will be the most appropriate treatment for that road. This way, the structural integrity of the 
road will be preserved. The different costs of each treatment type are shown in Table 5.5. These costs 
were estimated after consulting with representatives from many Wyoming counties. The potential 
improvement in the condition of a gravel road after applying a certain type of treatment is estimated using 
the improvement matrix shown in Table 5.6. If there is no treatment, or the applied treatment does not 
improve specific distress, the condition should be estimated according to gravel roads performance 
models.  

The developed performance models included all seven possible deterioration modes of gravel roads 
according to WYT2/LTAP as shown in Table 5.7. These models were developed based on the Markovian 
process. According to these models, the performance score of any road segment will drop significantly if 
it is left without maintenance interference for 12 months.  
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Table 5.4  Decision Matrix for Gravel Roads Maintenance by Types of Distress 
(Huntington et al., 2013). 

 
 

Table 5.5  Gravel Roads Maintenance Treatments and Costs (Saha & Ksaibati, 2017) 

 
 



45 
 

Table 5.6  Improvement Matrix for Gravel Roads 

 
 

Table 5.7  Performance Models for Gravel Roads (Aleadelat et al., 2019) 

 
 
5.2.2.2 Objective Function and Constraints Handling 

For every potential solution, the fitness was evaluated according to the following equation: 

 
Equation 5-10  Fitness Evaluation 

Where  
• n is the total number of gravel roads in the network;  
• OCi is the sum of all GRRS ratings for gravel road (i);  
• ADTi is the ADT (vpd) for gravel road (i); and  
• li is the length of gravel road (i). 

The objective of this work is to maximize the overall network conditions considering the assigned service 
levels for every road. The objective function of the optimization problem under study is shown in 
Equation 5-11. 
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Equation 5-11  The Objective Function of The Optimization Problem 

where CTi represents the average cost of the selected treatment according to Table 5.7. There is only one 
constraint in this optimization problem, which is budget. To handle infeasible solutions with costs that 
exceed the assigned budget, an adaptive penalty function is used according to Equation 5-12. This 
function uses the ratio between the actual cost to maintain the selected projects in a solution and the total 
cost of maintaining the entire network to penalize the infeasible solutions. This guarantees the 
transformation of the good features to the new offspring during the evolution process.  
 

 
Equation 5-12  Adaptive Penalty Function  

Finally, all the parts of this research methodology were combined and implemented under the GA 
framework using JavaScript and HTML programming languages to build the optimization tool. This tool 
can be easily used by decision-makers or local agency engineers by uploading a comma-separated values 
(CSV) sheet that has all the required parameters. The tool will be a webpage that can be hosted on the 
WYT2/LTAP website and be freely available on the internet. This will keep the annotated programming 
code available for future modifications, enhancement, and even criticism, by any user. 

Figure 5.10 shows a screenshot of an initial version of the developed tool. The optimization results can be 
displayed in a tabular format or in a histogram that displays the distribution of funds among the different 
treatment practices. The results can be saved and downloaded directly in the same CSV format for further 
analysis. The tabular results will include detailed information specific to each road, such as service level, 
required treatment type, estimated project cost, potential road condition, and whether to assign funds or 
not. Nonetheless, the user should be aware of the stochastic nature of the implemented algorithm. Any 
user should operate the tool with different parameters multiple times to cope with this stochastic nature. It 
is well known that higher mutation rates work well with smaller population sizes, and vice versa (Haupt, 
2000). 
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Figure 5.10  Screenshot of the Optimization Tool 

5.2.2.3 Laramie County 

To validate the optimization model and the developed tool, Laramie County was selected to perform a 
pilot study prior to statewide implementation. Laramie County has approximately 700 gravel road 
segments with a total length of 1,200 miles. To run the tool and to perform the optimization on Laramie 
County, all these gravel roads were evaluated according to the GRRS and RQRG manuals. Evaluating 
gravel road conditions all over these segments included two major tasks: road segmentation and surface 
evaluations. These two tasks are described in more detail in the following subsections:  
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Road Segmentation 

To obtain uniform, consistent, homogeneous, and more representative ratings, gravel roads were divided 
into smaller subsegments. This segmentation process was accomplished on-site during the rating process. 
Larger gravel roads were divided into smaller segments based on many considerations, such as usage 
levels, changes in the surface type, intersections, surface conditions, and sometimes the type of 
surroundings (i.e., crops or houses). The GPS coordinates of the beginning and endpoints of all gravel 
road segments were provided by the Wyoming Department of Transportation (WYDOT). These 
coordinates were uploaded into Microsoft Streets and Trips software for the actual identification of these 
roads on-site. Later, the same software was used during the segmentation process to record the GPS 
coordinates of the new subsegments for future reference.  

Surface Evaluation 

In the summer of 2017 one team of two trained raters spent two months driving over all the gravel roads 
in Laramie County and performed the rating process according to the RQRG and GRRS systems. Because 
of the varied nature of the gravel roads, the driving speed was variable from road to road and even within 
some road segments. However, the raters did not exceed the posted speed limits and tried to maintain 
normal driving conditions. Two vehicles, a 2010 Ford (F-150) pickup truck and a 2010 Chevrolet 
Suburban SUV, were used to perform the surface evaluation process. These vehicles were selected as the 
majority of Wyoming residents tend to drive similar vehicles because of the severe weather and road 
conditions in the state. Regarding ADT estimates, regression and logistic models developed by 
WYT2/LTAP were used to predict the ADT data on the proposed gravel roads. The output of these ADT 
prediction models is presented in GIS maps, available at the WYT2/LTAP website, for all gravel roads in 
Wyoming. Additionally, approximations of the current top surface widths were obtained from Google 
Earth maps. The evaluation results are described briefly in the following subsection. 

Current Conditions of Gravel Roads in Laramie County 

Figure 5.11 shows the results of the surface evaluation of gravel roads in Laramie County as of summer 
2017. Overall, it can be noticed that the majority of these roads are in fair to good condition; 
approximately, just 2% of these roads are in failure condition. Almost the same percentage of roads (2%) 
are in the very good category. Loose aggregate conditions are the best, compared with the other 
distresses, with almost 96% of the gravel roads evaluated within the fair or good categories. When it 
comes to dust, approximately 57% of the gravel roads generated very high dust compared with just 7% 
with no or very low dust. About 81% of the gravel roads had good cross-section or crown conditions, and 
similarly, for roadside drainage conditions, about 82% of the gravel roads were in the good category.  
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Figure 5.11  Condition Of Laramie County Gravel Roads As Of Summer 2017 

Optimization Results 

The optimization process started by combining all the required inputs for all gravel roads in Laramie 
County in a single CSV sheet. This CSV sheet was uploaded to run the optimization model using the 
developed tool. Different budgets were used to perform a sort of sensitivity analysis to determine a 
critical budget for Laramie County. Figure 5.12 shows the sensitivity analysis results. It can be noticed 
that, at $5.15 million, there is an obvious decrease in the slope and the improvement in fitness decreases 
considerably. Thus, the $5.15 million value can be considered a critical budget. After spending more than 
$5.15 million, the network conditions will not improve significantly. The anticipated overall improvement 
in the network condition compared with the actual conditions is about 15% after spending the critical 
budget. For the purposes of this analysis, the GA was run using a population size of 300, a mutation rate 
of 0.15, and a duration of 3 minutes without improvement as stopping criteria. It took approximately 15 
minutes for the algorithm to converge and generate each solution. 
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Figure 5.12  Budget Sensitivity Analysis According to the New Decision Matrix 

Figure 5.13 shows the assignment of the different service levels in Laramie County based on the 
optimization results after running the tool. It can be noticed that the majority of gravel roads in Laramie 
County have high and medium service levels (69%). Just 20% of these roads serve no or low traffic 
volumes. This means that the majority of these gravel roads will have high ride quality requirements to 
fulfill such high traffic demands. To maximize the overall network conditions and to improve the 
provided ride quality, Laramie County should focus its investments on gravel roads that serve medium 
and high traffic volumes. As a result, the majority of the funded projects were for roads within medium 
and high service levels. 

 
Figure 5.13  Service Levels of Gravel Roads in Laramie County 

  



51 
 

Furthermore, the implementation of a cost-effective treatment like TG can significantly increase the 
effectiveness of the adopted GRMS. In Wyoming, it was proven that using chemical suppressants is very 
efficient in abating dust, is economical, and can improve the ride quality enormously (Aleadelat & 
Ksaibati, 2017). The implementation of dust chemical treatments can increase the likelihood of creating a 
larger number of roads and abating the impacts of dust simultaneously, as shown in Figure 5.14. This 
figure shows the distribution of the various treatments over the road network. TG is the major applied 
type of treatment among the other six treatments, covering almost 480 miles of gravel roads. The majority 
of RG projects will be because of corrugated (‘‘washboard’’) conditions or loose aggregate. Regardless of 
the fact that RC is the most expensive treatment, it was not a preference for maintaining many roads. This 
can be attributed to the overall good conditions of Laramie gravel roads that serve medium to very high 
traffic. These conclusions are in line with a previous study conducted by WYT2/LTAP to mitigate the 
impacts of oil and gas vehicle traffic on gravel roads (Huntington et al., 2013). 

 
Figure 5.14  Treatment Type versus Budget 

Table 5.8 shows a summary of the analysis performed on Laramie County gravel roads. From this table, it 
is obvious that defining the way to mitigate dust on gravel roads is the main influencing factor in 
managing gravel roads in Wyoming. It is apparent that using dust suppressants is efficient, cost-effective, 
and suitable for local agencies. It can also be noted that the implementation of other dust mitigation 
strategies (i.e., re-graveling) can achieve more improvement to the overall network condition. However, 
chemically treating gravel roads can be preferable in providing the ability to manage more roads, which 
means more funded projects. This in turn can help to promote a sense of general satisfaction among the 
local populace who reside next to these roads, by treating many roads and providing reasonable 
improvements to the network on a minimal realistic budget at the same time. 
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Table 5.8  Modified versus Original Treatment Decision Matrix 

 
 

5.2.3  Development of Performance Prediction Models for Gravel Roads 
 Using Markov Chains 

5.2.3.1 Introduction 

One of the main goals of this phase is to develop an optimization tool that can help decision-makers at the 
local level in managing limited budgets and in selecting gravel roads for maintenance and rehabilitation 
(M&R) projects. The tool, which has been developed, implements an optimization model that works on 
maximizing the overall gravel road network conditions considering traffic volumes and subject to limited 
budgets. It is well known that the estimation of a gravel road potential service life is one of the integral 
parts of any maintenance assignment process. Therefore, this phase developed performance prediction 
models for gravel roads in Wyoming. Such prediction equations provide a mathematical representation of 
how a gravel road in Wyoming may deteriorate over time. 

In addition to the general lack of the available GRMS that are tailored to suit the needs of small local 
agencies, research efforts are more designated toward solving specific issues related to managing gravel 
roads within the premise of the developing agency. This explains the importance of establishing specific 
rules, guidelines, and models that are designated for Wyoming gravel roads rather than following the 
generic practices available in the literature. 

5.2.3.2 Case Study: Laramie County 

Laramie County is located in the southeastern part of the state of Wyoming. In this county, there are about 
700 gravel roads with a total approximate length of 1,931 km (1,200 miles). This county was selected to 
perform a pilot study prior to the statewide implementation of the new GRMS. One team spent two 
months performing fieldwork in Laramie County and evaluated the entire gravel road network during the 
summer of 2017. This intensive data collection effort resulted in a comprehensive dataset that is used to 
build the performance prediction models and ultimately the GRMS. The following subsections describe 
the data collection process and the current network conditions. 
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Surface Evaluation 

The WYT2/LTAP utilizes inexpensive, less labor-intensive windshield surveys, such as GRRS and 
RQRG, to evaluate gravel road conditions. The RQRG reflects the perceptions of roads users with regard 
to the driving quality of gravel roads. Figure 5.9 shows a brief description of the RQRG system. This 
system rates gravel roads on a scale from 1 (failed) to 10 (excellent) and it is more affected by surface 
deformation modes like potholes, washboards, and rutting. 

Laramie Gravel Road Conditions 

Figure 5.15 illustrates the evaluation results of gravel roads in Laramie County. From the figure, it can be 
noted that 75% of the roads are found to be in fair to good overall condition, and only 1% of the roads are 
in failure condition. It is apparent from this figure that the loose aggregate conditions represent the best 
condition compared with the other distresses, with 96% of the roads falling in the fair to the good 
categories. On one hand, the evaluation results show that the majority of Laramie County gravel roads 
(57%) generate very high dust. On the other hand, only 27% of these roads have no or very low dust 
emissions. Generally, gravel roads in Laramie County have good cross-section or crown conditions, as 
81% of these roads fall in the good category. Similarly, 82% of these roads have good drainage 
conditions. 

 
Figure 5.15  Laramie County Gravel Road Conditions as of Summer 2017 
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5.2.3.3 Performance Modeling 

Markov chain theory is used to develop the performance prediction models for each distress or 
deterioration mode related to gravel roads. The implementation of this probabilistic approach within any 
stochastic process requires that such a process be discrete in time and has determinate states. 
Additionally, the future condition of this process should be solely dependent on the present condition of 
the process (Hassan et al., 2015). These prerequisites apply to gravel road networks. For example, it is 
prevalent to analyze road networks within definite time points and to establish stationary states that 
describe road conditions at various time periods. Furthermore, the future condition of any gravel road is 
solely dependent on its current state, not its previous conditions. 

The modeling process using the Markov chain theory involves three main steps, which are, in order, the 
development of state vectors, transition probability matrices (TPM), and the development of the 
prediction models. These steps will be described in more detail in the following subsections. However, 
before starting the Markov process, the number of states for each distress and the length of stages or duty 
cycles must be defined. Due to the dynamic nature of gravel roads and their short service life, monthly 
duty cycles are selected. Table 5.9 shows the number of states (categories) assigned for each distress. Any 
gravel road, during its service life, will transition through these different states without any maintenance 
intervention. According to the GRRS standards, it is advised to give integer ratings to place a gravel road 
within any condition category for simplicity purposes. In the field, it is not rational to discriminate 
between any two gravel roads by tenths of a point. 

Table 5.9  Number of States Assigned for Each Distress 

 

State Vectors 

There are two types of state vectors according to the MC modeling approach. These types are the initial 
vector and the start vector, which both define the probability of a gravel road to be in one of the condition 
states at age (0) of the duty cycle. The difference between these types is that the initial vector assumes 
that all gravel roads have conditions similar to the conditions right after construction (i.e., perfect shape). 

The start vector is based on the current gravel road conditions and the proportion of the network length 
that falls in each state category. The initial vector concept is followed in this study. Based on the collected 
data in the summer of 2017, some of the estimated start vectors and an initial vector for Laramie County 
gravel roads are shown in Table 5.10. It should be noted that the sum of proportions in every vector 
should be 1. 
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Table 5.10  Start Vectors for Laramie County Gravel Roads 

 
*F: Failed; VP: Very Poor; P: Poor; FA: Fair; G: Good; VG: Very Good; H: High; M: Medium; L: Low. 

Transition Probability Matrices (TPM) 

In this phase, a stationary TPM is developed for each distress type. The developed TPMs will be used to 
predict the development of each distress with time. In Laramie County and for the purposes of this pilot 
study, gravel road conditions are available for only one duty cycle. Therefore, average deterioration rates, 
in points per day, are used to estimate gravel road conditions for the next duty cycle and in the 
development of the TPM. The average deterioration rates were used along with the collected data to 
establish a historical database. In this process, the average deterioration rates were deducted daily from 
the collected data for a period long enough to reach failure for every gravel road. This process provided 
this study with the necessary historical data to build the Markov chains. After examining the established 
historical database, different duty cycles were defined to simplify the Markov chains building process. 
Later, the established historical database and the defined duty cycles were used to build the TPM. 

Hence, both the states and the transition probabilities will have the same cycle length for every 
deterioration mode. The utilized deterioration rates and the different selected duty cycles are shown in 
Table 5.11. It can be noticed that potholes and washboards have the highest deterioration rates compared 
with the other distresses. The average deterioration rates were estimated, using the same rating scale used 
in this study, after monitoring 20 well-constructed gravel roads segments at sites in north-central 
Wyoming for 10 months (Huntington & Ksaibati, 2007). During this 10-month period, gravel roads were 
rated weekly. Some distresses required more than a week or even a month to deteriorate from one stage to 
another. Therefore, the number of days required for each distress condition (i.e., potholes) to deteriorate 
from one stage to the next was used to calculate the average deterioration rates by points per day. Then, 
the overall average among all the stages was used to estimate the final deterioration rates used in this 
study. Considering the dynamic and arbitrary nature of gravel roads, following this approach saved time, 
effort, and resources required to collect multiple duty cycle historical data. 

According to the National Oceanic and Atmospheric Administration (NOAA), the Wyoming north-central 
areas are part of the Wyoming climatic division 5, or what is known as “the Powder, Little Mo, and 
Tongue Drainages,” while the data collected in this study were from Laramie County, which follows the 
Wyoming climatic division 8, or what is known as “Lower Platte.” Both climatic regions share similar 
short, warm, and dry summers with average precipitation rates from 1.8 to 2.2 inches. During the warm 
season, region 5 has an average daily high temperature of around 78°F while region 8 is around 70°F. 
During the cold season, region 5 has an average daily high temperature of around 45°F while region 8 is 
around 41°F. Additionally, both regions serve similar rural traffic conditions. Hence, these estimates can 
be used in this study to develop TPM. Different duty cycles were selected to allow reasonable transitions 
from one stage to another, which can simplify the modeling process. 
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Table 5.11  Average Deterioration Rates for Gravel Roads in Wyoming 

 

Table 5.12 shows a TPM for potholes where rows denote the current state and the columns represent the 
future state after the transition period. According to this TPM, the probability of a gravel road in a very 
good (VG) or a very poor state (VP) to remain in that state is zero. There is a rather high probability 
(greater than 0.7) for a road in a fair (F) or poor state (P) to remain in that state. These results can be 
attributed to the dynamic nature of these kinds of roads. Frequent light M&R interventions, such as light 
blading, are required to keep a gravel road in the very good (VG) state for more than one duty cycle. The 
same behavior can be noticed for rutting and washboards. When it comes to loose aggregates, dust, 
drainage, and crown conditions, the deterioration patterns are slower. Thus, a gravel road may stay in the 
same state for more than one duty cycle as seen in Table 5.13. For dust, drainage, and cross-section the 
deterioration rates are very small. Thus, a cycle of 17 months is assumed to develop the TPM. 

Table 5.12  TPM for Potholes 

 

Table 5.13  TPM for Loose Aggregate 

 

Models Development 

Finally, the TPM and the initial vector are used together to build Markov chains for the different 
deterioration modes. For example, Table 5.14 shows a Markov chain for loose aggregate and the 
associated weighted average condition for each stage. The weighted averages were calculated based on 
the actual possible ratings that a rater might give to a road in the field and the possible transition 
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probabilities. For example, the average weighted loose aggregate condition of a gravel road can be 
estimated as follows:  

1. After 4 months = 0*9 + 1*7.5 + 0*5.5 + 0*3.5 + 0*2 + 0*1= 7.500. 
2. After 12 months = 0*9 + 0.201*7.5 + 0.754*5.5 + 0.045*3.5 + 0*2 + 0*1= 5.811.  

These weighted averages, accompanied with the time duration, are used to predict the performance model 
for loose aggregate as shown in Figure 5.16. The value y in Figure 5.16 denotes the predicted rating at a 
given age (months). 

Table 5.14  Markov Chain for Loose Aggregate 

 

 
Figure 5.16  Loose Aggregate Performance Model 
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Figure 5.17 shows another representation of the developed Markov chain using a bar chart based on the 
start vector of loose aggregate. This chart shows the probability of any gravel road segment to be in a 
specific condition state at any given period of time. For example, a gravel road has a 55% chance to be in 
fair loose aggregate condition after eight months of construction. The same segment has a 45% chance to 
be in good loose aggregate condition at the same age. Based on the current conditions of the network (i.e., 
start vector), the probability of having a gravel road at the first month of its service life in the very good 
category is less than 1%. 

 
Figure 5.17  Markov Chain for Loose Aggregate 

Table 5.15 shows a summary of the developed performance prediction models using the MC approach for 
all the distresses according to the GRRS. According to this table, and based on the actual conditions and 
deterioration rates, crown and drainage have similar predicted performance equations. This can be 
attributed to the strong link between drainage and crown conditions. Roads with poor drainage tend to 
allow more water to filtrate the subgrade, which increases the likelihood of a cross-section failure. The 
developed prediction equations are based on the GRRS system, which is a modification to the PASER 
system. Thus far, and at least in the United States, these prediction equations are unique and thoroughly 
describe the deterioration modes of gravel roads based on a popular visual evaluation method.  

Table 5.15  Performance Models for Gravel Roads

 

Figure 5.18 graphically shows all the developed predicted performance models. As seen from this figure, 
the fastest distresses to reach failure conditions are washboards and potholes. These two distresses can 
reach failure (R < 2) within only 13 months, and both distresses have similar performance throughout the 
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road service life. For rutting, it takes about 28 months to reach failure conditions. The deterioration that is 
based on loose aggregate conditions is the longest. A gravel road requires about 88 months to reach 
failure (R < 2) compared with cross-section, dust, and drainage-based deteriorations (34 months). 
Nonetheless, gravel road conditions are sometimes harder to predict. 

Gravel road deterioration modes are interrelated to each other and every distress may encourage the 
development of other distresses, which is apparent from the Pearson correlation matrix shown in Table 
5.16. According to this matrix, there are strong positive correlations among potholes, washboards, and 
rutting. The same association can be noticed among roadside drainage, crown, and rutting. Also, there is 
an association among dust, loose aggregate, and washboards, but the association is not as strong. Lastly, it 
can be noticed that potholes, washboards, and rutting are most highly correlated with the overall ride 
quality. Thus, these deterioration modes are the main contributing factors to the comfort of road users and 
the reason behind the failure of gravel roads. 

Table 5.16  Pearson Correlation Matrix 
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Figure 5.18  Markov Performance Models of Average Condition Values for All Distresses 

5.2.4  A Developed Methodology for Determining Gravel Roads’ Level of Service: 
 A Case Study of Wyoming 

5.2.4.1 Introduction 

The focus of this phase is to develop a systematic method for ascertaining the level of service (LOS) of 
gravel roads in the US. To date, such a method does not exist in the Highway Capacity Manual (HCM). 
In this phase, a methodology comprising eight criteria that affect gravel road traffic operations is 
developed. For each criterion, a rating is assigned. It is either “Good,” “Fair,” or “Poor.” The results of 
each individual criterion rating are combined to develop an overall LOS rating. Furthermore, a non-
parametric machine learning technique, namely the classification and regression tree (CART) modeling 
structure, is employed to quantify the contribution of each criterion to the overall gravel roads’ LOS. As a 
case study, the developed methodology is implemented to assess traffic operations of gravel roads in 
Laramie County, Wyoming. The studied gravel road network is compiled and managed in a geographic 
information system (GIS) shapefile prepared for the purpose of this research. It provides decision-makers 
in local agencies a computerized tool to efficiently track the performance of their gravel road network. 
The developed methodology is intended to benefit traffic engineers, decision-makers, and any other 
stakeholders. The gravel road LOS methodology was developed and applied to Wyoming’s conditions. 
Minor adjustments might be needed for implementation in other jurisdictions. 
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5.2.4.2 Methodology 

In this phase, the gravel roads’ LOS is based on combined measures adapted from the HCM’s two-lane 
highway methodology, Wyoming County Road Manual, Rural Road Design, Maintenance, and 
Rehabilitation Guide, and the AASHTO Guidelines for Geometric Design of Very Low-Volume Local 
Roads (ADT ≤ 400 vpd). This phase is focused on expressing the gravel road quality of service as a 
function of multiple variables. They are the road’s surface width, ride quality, dust level, access point 
density, terrain conditions, average operating speed, traffic volume, heavy vehicle traffic volume, and the 
number of dwelling units per mile.  

When it comes to traffic volume, the HCM is based on an hourly analysis period accounting for variations 
in travel demand. Yet, since peak hour volumes of gravel roads are low (typically less than 50 vph 
assuming a maximum volume of 400 vpd), performing a peak hour analysis is not meaningful for 
unpaved roads. Hence, the peak hour factor is not used. Furthermore, the traffic directional split is a key 
measure for LOS calculations of the HCM. However, this metric is precluded since the traffic volumes 
evaluated are 400 vpd or less and it is assumed that passing opportunities are not possible since centerline 
pavement markings are not applicable and the gravel roads are narrow and dusty. Also, all gravel road 
segments analyzed in this research are on rolling terrain and not on specific grades. For analysis purposes, 
the difference in the effect of the grade on each travel direction’s traffic operations is the same for level 
and rolling terrain conditions. In this research, a methodology comprising eight criteria that affect gravel 
road traffic operations is developed. For each criterion, a rating is assigned. It is either “Good,” “Fair,” or 
“Poor.” Table 5.17 presents the criteria variables selected for evaluating the LOS of gravel roads.  

Table 5.17  Input Measures for the LOS Criteria 

 

5.2.4.3 Data Collection 

The gravel road data of Laramie County, Wyoming, are provided by the Wyoming Department of 
Transportation (WYDOT) and the Wyoming Technology Transfer Center (WYT2) of the University of 
Wyoming. The data include records of the variables presented in Table 5.17.  
 
5.2.4.4 Unpaved Road Level of Service Criteria Approach 

The HCM methodology is followed to compute the LOS measures, and additional measures are obtained 
using the Wyoming County Road Manual. This blend is selected since the operating characteristics of 
gravel roads are dependent on the ride quality and the dust levels, which are factors not accounted for in 
the HCM’s two-lane highway LOS methodology. The variables considered in the proposed methodology, 
used for assessing gravel roads, are detailed in the following sections. Each variable is assigned a rating, 
and the overall gravel road’s LOS is computed as an aggregate rating of each variable’s rating. 
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Surface Width 

Regarding gravel roads, the AASHTO Guidelines for Geometric Design of Very Low-Volume Local 
Roads (ADT ≤ 400 vpd) states there is no evident difference between the “roadway” and the “shoulder” 
(AASHTO, 2001). Therefore, the gravel road width is used as a variable. In this research, this variable is 
established based on the total surface width standards of the Wyoming County Road Manual (Hesterberg, 
2011). Table 5.18 illustrates the surface width ratings. As shown in Table 5.18, the ratings are provided 
by the number of dwelling units (DU). Typically, the gravel road width is proportional to the number of 
dwelling units. 

Table 5.18  Surface Width Ratings 

 

Surface Conditions 

The Gravel Road Management Systems (GRMS) manual states that surface conditions may affect the 
average operating speed. In this study, the surface condition data of gravel roads are those of the quality 
indices. Table 5.19 illustrates the distress conditions and their ratings as labeled in the PASER manual 
(Walker et al., 1987). This manual rates and evaluates gravel road segments based on some of the criteria, 
such as ride comfort, safety, travel speeds, and vehicle wear and tear. Based on the RQRG measurements, 
surface condition ratings of gravel roads are developed and shown in Table 5.20, where, for example, 
gravel roads with RQRG value (RQRG ≥ 7) will be rated as a “Good” LOS rate.  

Table 5.19  Ride Quality Rating Guide’s Ratings (WYT2/LTAP, 2014) 

 

Table 5.20  Surface Condition Ratings 
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Dust Level 

Unlike paved road conditions, daily traffic on gravel roads generates dust. Traffic-generated dust creates 
major safety, health, and environmental problems (Albatayneh et al., 2019-b; Albatayneh et al., 2020-c). 
For instance, it is estimated that fatal and injury crashes on unpaved roads in developing countries, 
attributed to dust generation, cost $800 million annually (Greening, 2011). Local agencies regularly track 
gravel road performance, especially the generated dust quantities in order to maintain such roads. 
Therefore, it is crucial to consider traffic-generated dust as one of the variables for determining the 
overall gravel roads’ LOS. Table 5.21 presents the dust ratings by level based on the Gravel Roads Rating 
Standards (Ksaibati, 2014). As seen, the “Good” rating is assigned to gravel roads with low dust, the 
“Fair” rating is assigned to gravel roads with medium dust, and the “Poor” rating is assigned to gravel 
roads with high dust.  

Table 5.21  Dust Level Ratings 

 

Access Point Density 

In access management, the density of access points is considered a measure of the number of entries/exits 
along a given road. It is inversely proportional to the average operating speed. The access points include 
intersections, streets, and driveways on either travel direction. Thus, access points are an essential 
criterion for establishing the overall LOS criteria. The access point data are available in the form of GIS 
shapefiles. However, the GIS data did not cover all the roads in the case study. Hence, the missing data 
are collected from Google Earth. The access point density is calculated as the average number of access 
points per mile. Ratings are assigned to the access point density values obtained based on the Rural Road 
Design, Maintenance, and Rehabilitation Guide. The ratings are presented in Table 5.22. 

Table 5.22  Access Point Density Ratings 

 

Terrain 

Based on the Rural Road Design, Maintenance, and Rehabilitation Guide, the level terrain is defined as 
flat or rugged terrain that does not constrain heavy vehicle drivers, particularly truck drivers, to reduce 
their travel speeds noticeably below passenger car speeds. In the rolling terrain, the pavement gradient is 
more than the level terrain and is characterized by heavy vehicle speeds that are lower than those of heavy 
vehicles traveling on level terrain. On the other hand, mountainous terrain is known for its steep grades, 
which significantly affect travel speeds. Note that when implementing the HCM’s LOS methodology of 
two-lane highways, the user specifies the grade and its length when analyzing the conditions of steep two-
lane roads.  

With the use of the GIS shapefile data and Google Earth, interpolation is made to obtain the elevation at 
each end of each gravel road segment. The change in elevation (∆ Elevation) is calculated and divided by 
the length of the gravel road segment in order to compute the segment’s gradient. In Wyoming, most of 
the county roads are often not paved. Based on the Wyoming County Road Manual, ratings are developed 
to gauge the effect of the grade on traffic operations. The ratings are presented in Table 5.23. 
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Table 5.23  Grade Ratings 

 

Speed 

The average travel speed on gravel roads is one of the decisive factors that determine the gravel roads’ 
LOS. Regarding Wyoming, the design criteria for speeds on a newly constructed gravel road are available 
in the Wyoming County Road Manual. The design speed values range from 20 to 55 mph based on the 
gravel roads’ terrain. Additionally, the number of dwelling units is a critical factor to be considered when 
evaluating average operating speeds on gravel roads. The ratings used for evaluating gravel road average 
operating speeds are illustrated in Table 5.24. 
 
Table 5.24  Speed Criteria for the Gravel Roads’ LOS 

 

Average Annual Daily Traffic (AADT) 

The AASHTO Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT ≤ 400 vpd) 
states there are no specific standards for maximum traffic volumes for which gravel roads are appropriate 
(AASHTO, 2001). However, in the NCHRP Report 362, it is mentioned that for gravel roads, crash rates 
become pronounced for traffic volumes of 250 vpd or more. For instance, 250 vpd is considered the 
breakpoint between the “Poor” and “Fair” AADT ratings according to the AASHTO Guidelines for 
Geometric Design of Very Low-Volume Local Roads (ADT ≤ 400 vpd), from which the AADT ratings 
are presented in Table 5.25. In the case of a gravel road with an AADT greater than 400 vpd, a chemical 
surface treatment is recommended, and therefore the road is considered paved. 

Table 5.25  Traffic Volume Ratings 

 

Average Annual Daily Truck Traffic 

In the United States, heavy trucks play a critical role in the economy. Heavy vehicles are considered the 
main transportation mode for moving goods. Heavy vehicles have different operating characteristics as 
compared with other vehicles and therefore affect traffic flow operations. When truck traffic is 
significant, there is a chance that the gravel road will be frequented by vehicles tailgating trucks. This 
tailgating substantially increases the percent-time-spent-following (PTSF), which is the average 
proportion of time spent following a slower-moving vehicle ahead due to limited passing opportunities. 
Also, when a gravel road becomes increasingly dominated by truck traffic, special roadway design 
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treatments are required. Therefore, the daily truck traffic should be considered in the gravel roads’ LOS 
methodology.   

In the gravel road design and repair section of the Rural Road Design, Maintenance, and Rehabilitation 
Guide, ratings are provided regarding daily truck traffic on gravel roads (Beckemeyer & McPeak, 1995). 
Table 5.26 illustrates these ratings. 

Table 5.26  Truck Traffic Volume Ratings 

 

 Miscellaneous Variables  
In addition to the previously discussed variables, an assumption is made in this study about unpaved 
arterials and collectors. Generally, gravel arterials are rated as “Poor” since, ideally, all arterial roads 
should be paved. Likewise, collectors should be paved even though unpaved collectors do exist. For this 
research, collectors with grades greater than 9%, which is the maximum design grade for collectors as per 
the Wyoming County Road Manual, are rated as “Poor.” Furthermore, the Wyoming County Road 
Manual requires that collectors have a minimum design speed of 30 mph. Hence, collectors with a design 
speed less than 30 mph are rated as “Poor.” 

Overall Level of Service 

Given the ratings of the previously discussed variables, the overall LOS criteria are developed. For each 
variable namely, the surface width, surface conditions, dust level, access point density, terrain, speed, 
AADT, and AADTT, the corresponding ratings are input in the overall LOS computations. The overall 
LOS computations involve assigning a score of 0, 1, or 2 for the variable ratings “Good,” “Fair,” and 
“Poor,” respectively. The sum of each variable’s score is calculated to obtain the overall LOS score. Once 
the score is computed, the overall LOS was assigned as a percent (%) as seen in Table 5.27, where a score 
of less than 33% is Good, a score between 33% and 66% is Fair, and a score of more than 66% is Poor. 
Therefore, this table is used as a basis for stratifying the scores into gravel roads’ LOS.   
 
Table 5.27  Gravel Roads’ LOS criteria 

 

Classification and Regression Tree (CART) 

The CART machine learning modeling technique is a non-parametric method. That is, it does not require 
an assumption to be made regarding the relationship between the response and the predictors. The CART 
method is used on data of 63 gravel road segments in Laramie County, Wyoming. The LOS score is 
modeled as a function of the previously discussed variables. It should be noted that 70% of the data are 
used for model training and the remaining 30% are used for testing. In CART modeling, generating the 
variable importance can assist researchers to exclude certain variables (predictors) that have no 
contribution to the response variable. According to the analysis results, all variables are found to 
influence the overall LOS. Figure 5.19 illustrates the relative importance of each variable. For instance, as 
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shown in the figure, the AADTT is the variable that has the most powerful impact on the LOS. That is 
possibly due to surges in dust levels generated by heavy trucks and in PTSFs resulting from light vehicles 
tailgating trucks. Furthermore, the CART model is evaluated using a confusion matrix whose results are 
shown in Table 5.28. As shown in the table, the overall prediction accuracy of the classification model is 
estimated at 84.2% when applied to the test dataset. Simply put, classification accuracy can generally 
provide an indication of how accurate your predictions are. In the confusion matrix, this prediction 
accuracy is measured as the summation of true negatives and positives divided by the total population 
used. This degree of accuracy is considered high, especially for gravel road management systems.  

Table 5.28  Classification and Regression Tree’s Confusion Matrix Results 

 

 
Figure 5.19  Gravel Roads’ LOS— Variable Importance 

 
5.2.4.5 CASE STUDY: WYOMING’S GRAVEL ROADS 

The sample of the previously mentioned 63 gravel road segments in Laramie County is evaluated using 
the proposed methodology for determining the overall LOS. The computations are conducted in a 
spreadsheet. Table 5.29 presents the individual LOS for each variable.  
 
Table 5.29  Gravel Roads’ LOS for Each Criterion 
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As the data are analyzed, they are compiled and managed in a GIS shapefile prepared for the purpose of 
this research. This will provide decision-makers in local agencies a computerized tool to efficiently track 
the performance of their gravel road network. Figure 5.20 shows the GIS map of the gravel road network 
under study and its LOS results obtained using the developed methodology. As a result, this map can be 
considered as one of the resources that engineers and stakeholders can use to maintain and manage their 
gravel road network. Furthermore, stakeholders and managers can also gain insights on the individual 
rating for each gravel road segment in order to precisely identify and investigate the road segments that 
need immediate attention. Figure 5.21 shows the individual rating for each gravel road segment included 
in this study. As shown in Figure 5.22, roughly 63.5% of the gravel road segments are operating at an 
LOS of “Fair,” while 19% are operating at an LOS of “Poor,” and, unexpectedly, 17.5% are operating at 
an LOS of “Good.” 

A separate analysis is conducted on the sample of segments of Laramie County’s gravel road network 
using the HCM’s methodology pertaining to two-lane highways to calculate the PTSF and proportion of 
free-flow speed (PFFS). Both measures are required to determine the LOS. The PFFS is the ratio of the 
average travel speed to the free-flow speed, which is the maximum speed achievable during minimal 
volume conditions. The PFFS is a surrogate measure of the proportion of travel time in which traffic 
operates at the free-flow speed. Note that the gravel road segments assessed in this research closely 
resemble Class II and Class III two-lane highways depending on the number of DUs. Class II two-lane 
highways are characterized by hilly terrain and moderate travel speeds. They are typically shorter than 
intercity routes. The LOS of Class II two-lane highways is solely dependent on the PTSF. On the other 
hand, Class III two-lane highways are those that pass through towns, and thus travel speeds are lower than 
those of Class II two-lane highways. The LOS of Class III two-lane highways is based on the PFFS only. 
Regardless, both the PTSF and PFFS are computed for the segments under study. According to the results 
of both measures, all except one segment are operating at an LOS of “A.” The remaining segment is 
operating at a LOS of “B.” The discrepancy of the LOS results of the proposed methodology and that of 
the HCM belonging to two-lane highways is plausible because of multiple factors. They are the ride 
quality and dust level. Also, since the results of the variable importance plot presented in Figure 5.19 
indicate that the truck volume is the chief variable influencing the LOS of gravel roads, it may be 
suspected that the operating characteristics of heavy vehicles vary by road surface type. Heavy vehicles 
may possibly generate more dust relative to light vehicles. Moreover, it is inferred from the findings of 
this research that the HCM’s LOS methodology of two-lane highways is not applicable to gravel roads.      
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Figure 5.20  A GIS Map of the Overall Gravel Roads’ LOS in Wyoming 

 
Figure 5.21  Overall Gravel Roads’ LOS in Laramie, County, Wyoming   
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Figure 5.22  Overall Gravel Roads’ LOS in Laramie  

5.3  Chapter Summary 

This chapter discussed the methodologies, data analysis, and results of this research study’s second 
objective. The chapter explained the methodologies and the data collection procedures conducted to 
develop an optimization tool to select gravel road treatment projects using genetic algorithms. This 
objective established optimization models to help decision-makers within local agencies allocate their 
limited funds among the various gravel road projects. 

Ultimately, the results found in this chapter contribute to a growing body of literature about the behavior 
and performance of selecting treatment for gravel roads. Such knowledge can aid agencies and decision-
makers in implementing more cost-effective strategies to manage and maintain their gravel road asset 
network. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1  Conclusions 

This research study was part of a multiple-year study conducted by the Wyoming Technology Transfer 
Center to assess road conditions for Wyoming county gravel roads. The research study was divided into 
two objectives and included the use of smartphones, machine learning, optimization techniques, collected 
data, and statistical analysis. 

This chapter summarizes the valuable information and knowledge in terms of managing and maintaining 
gravel roads in Wyoming. Moreover, the recommendations presented in this chapter will guide 
transportation agencies to better understand the performance of gravel roads and therefore develop cost-
effective strategies to manage and maintain the state’s gravel road networks. 

Objective 1 was to continue the efforts of the WYT2/LTAP office to develop and implement smartphone 
applications and technologies to assess gravel road conditions and performance. This included the 
continuation of the data collection process, where gravel roads from various counties around Wyoming 
were tested. Testing, as described in Chapter 4, included measuring dust emitted from gravel roads via a 
Dustometer and smartphone application; it also included the collection of temperatures and vehicle 
speeds, as well as locations. A descriptive analysis was conducted to explore dust generation trends from 
gravel roads. 

For this research study and as part of the WYT2/LTAP’s efforts to develop a gravel roads management 
system (GRMS) in Wyoming, objective 2 was to develop user-friendly tools, using JavaScript and other 
programming languages, which implement an optimization model based on genetic algorithms (GA). The 
developed tool will help decision-makers and local agencies in managing gravel roads efficiently. Using 
these tools, decision-makers will be able to identify the most appropriate treatment type for each road 
based on service level, estimated project costs, predicted road conditions, and whether to fund a project or 
not. The optimization models aim to maximize the overall condition of the gravel road network subject to 
the average daily traffic (ADT) on each road. The developed tools can be applied to large-scale 
optimization problems (i.e., gravel road network). The tools operate with minimal data requirements that 
are in line with procedures regularly followed at these agencies. In addition to having an engineered 
outcome, these tools can help local agencies allocate their limited available funds efficiently, enhance the 
planning process, maximize the social welfare of the local economy, and promote a sense of general 
satisfaction within the local community. A case study using data from Laramie County was used to 
develop these tools. Different types of analyses were conducted to carefully validate the performance of 
the developed tools. Both exploratory and statistical analyses were conducted. Moreover, objective 2 of 
this research study developed an optimization tool that can help decision-makers at the local level in 
managing limited budgets and in selecting gravel roads for maintenance and rehabilitation (M&R) 
projects. The tool, which has been developed, implements an optimization model that works on 
maximizing the overall gravel road network conditions considering traffic volumes and subject to limited 
budgets.  
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6.2  Recommendations 

This research study has developed several methodologies to assess gravel road conditions in Wyoming. 
For Wyoming agencies responsible for managing gravel roads, the following are recommendations based 
on the findings of the study:  

• This research study presented a simple image processing algorithm to extract data about the dust 
amount on gravel roads. Based on the promising findings presented in this phase, utilizing an 
artificial neural network (ANN) using high-level programming languages such as JavaScript and 
C-Sharp would be helpful to train and tune the current algorithm.  

• Based on the promising findings of this research study, it is recommended that the proposed data 
collection/analysis tool be implemented by local agencies nationwide. Also, this image classifier 
can be extrapolated to other problem domains where the same principles apply. 

• For local agencies managing gravel roads, it is recommended to employ and implement the 
developed image classifiers to collect dust and corrugation data.  

• The established performance prediction equations should be used in developing a comprehensive 
optimization model for gravel roads in Wyoming. Other local agencies in the United States can 
follow the same methodology developed in this study to develop their own prediction equations 
for the evaluation of road conditions. Additionally, the developed prediction equations are based 
on modifications to the PASER system, which means that the new equations might be 
transferable for direct use by other local agencies in the United States.  

• It is recommended that local agencies in Wyoming incorporate the developed tools within their 
gravel road management strategies and follow the modified decision matrix implemented in this 
research study. At this stage, the developed tools can provide good guidance to decision-makers 
at local agencies. The tools’ outputs can deliver valuable insights into how to select roads for 
maintenance projects in a way that maximizes the overall network conditions subject to the traffic 
volumes served. Other local government agencies in the United States can follow the same 
methodology developed in this study to select gravel roads for maintenance projects. The process 
is systematic and can be duplicated to ensure limited available funding is allocated in the most 
cost-effective manner.  

• The CMAQ program officials at WYDOT and the counties are advised to use the developed 
optimization tools for allocating CMAQ funds among the different counties. This entails that 
Wyoming counties need to follow the new requirements and support their CMAQ applications 
with the necessary data, such as ADT, surfacing material fines, speeds, agricultural lands, and 
households. 
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6.3  Future Studies 

For gravel roads, additional efforts are required at this stage to implement smartphones in the data 
collection process. Furthermore, experimental work is still required to improve the reliability of using 
smartphones in gravel road data collection. Also, using different types of smartphones, testing vehicles, 
and smartphone locations in the vehicle should be examined in more detail to provide and simulate better 
real-time circumstances.  

For more comprehensive management systems, it is suggested that the recommended practices and 
available resources be collected by a survey questionnaire for each county to balance between the current 
practices and proposed solutions in this research. After that, specific performance curves are 
recommended to be developed for road condition indices to project future road performance along a 
multi-year planning horizon. 

In the course of this research study, numerous learned lessons suggest more research is needed to better 
quantify and assess the long-term use of the developed tools on gravel roads. Future research should 
therefore concentrate on investigating the following: 

• Monitor the gravel road conditions after the implementation of the developed tools.  
• Maintain a regular data collection process in order to include more gravel roads in the analysis. 
• Document long-term gravel road deterioration, performance, and user cost to develop predicting 

performance models. 
• Increase the efficiency and the functionality of the developed tools, incorporating GIS maps 

directly, comparing different optimization techniques, and looking for more influential variables 
to the optimization process.  
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APPENDIX A 

Appendix A-1: Instructions on How to Use the Dust Optimization Tool 

The following instructions provide the necessary steps to run the dust optimization tool:  
 
1. Prepare a CSV file with the required inputs as shown exactly in Figure A.1. Table A.1 shows a 

description for each column.  
 

 
Figure A.1  Sample CSV File to Run the Dust Optimization Tool 

 Table A.1  Description for the Dust Optimization Tool Inputs 
Column Description Source 
A County code  

  B Road name Google Earth, GIS maps 
C Average Daily Traffic (ADT) WYT2/LTAP ADT Maps 
D % Passing sieve No. 200  (Ratio) WSS or Soil Samples 
E Agricultural length on both sides of the road (miles) Google Earth, GIS maps 
F Number of households on both sides of the road (Within 984ft buffer) Google Earth, GIS maps 
G Road length submitted for treatment (miles) Google Earth, GIS maps 
H Soil moisture content (Ratio) Figure A-2 
I Average driving speed (mph) County Engineers 
J County to state oil production ratio WOGCC 

 
 

A B C D E F G H I J 
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Table A.2  County Codes  
Code COUNTY Code County 

0 Park 12 Natrona 
1 Campbell 13 Converse 
2 Crook 14 Sublette 
3 Bighorn 15 Lincoln 
4 Sheridan 16 Goshen 
5 Teton 17 Platte 
6 Johnson 18 Carbon 
7 Weston 19 Albany 
8 Washakie 20 Sweetwater 
9 Hot Springs 21 Laramie 
10 Fremont 22 Uinta 
11 Niobrara   

 

 
Figure A.2  Soil Moisture Content for Every County in Wyoming 

2. Please fill the required fields and select the counties that are submitting for CMAQ funds as 
shown in Figure A.3. For mutation rate, the recommended values are between 0 and 0.1. The 
recommended initial population size is equal to the total number of gravel road segments. As a 
rule of thumb, a small population rate goes with higher mutation rates and vice versa.   
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Figure A.3  Sample Inputs to Run the Optimization Tool 

 
3. Click on the “Choose File” button and select the CSV file from step 1.  
4. Click on the “Upload Variables” button to upload the GA variables.  
5. Click on the “Setup GA” button to initialize the algorithm. 
6. Click on the “Run GA” button to run the algorithm. Please follow the numbers shown in Figure 

A.3.  
7. After the convergence of the algorithm, please click on the “Show Optimization Results” button 

to show the optimization results.   
8. Click the “Save” button to download the optimization results. The results will be a CSV file that 

can be uploaded to Excel for further analysis. 

The tool generates two figures directly with the results. The first figure shows a fitness curve that 
displays the optimization progress with time. The second figure shows a histogram for the 
distribution of funding among the different counties. A sample of these two figures are shown in 
Figure A.4. In addition to these figures, the optimization results will be shown in a tabular 
format.  

Higher number of roads in the 
optimization requires more time for 
the algorithm to converge. 
However, 2 minutes work well 
with less than 150 roads.  

1 
2 

3 
4 

5 
6 

7 

8 

9 10
 

11 12 
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Figure A.4  Optimization Tool Sample Output 

To get the best results and to cope with the stochastic nature of the used algorithm, it is highly 
recommended to run the tool multiple times with different GA inputs. After that, a user should compare 
between the final results and select the most suitable result according to his/her discretion.  
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Appendix A-2: Instructions on How to Use the Untreated Gravel 
Roads Optimization Tools 
 
The following instructions provide the necessary steps to run the untreated gravel roads optimization tool:  

 
1. Prepare a CSV file with the required inputs as shown exactly in Figure A.5. Table A.3 shows a 

description for each column. 
 

 
Figure A.5  Sample CSV File to Run the Untreated Gravel Roads Optimization Tool 

    
  

A B C D E F G H I J K 
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Table A.3  Description for the Untreated Gravel Roads Optimization Tool Inputs 
Column Description Source 
A Road name Google Earth, GIS maps  
B Road length (miles) Google Earth, GIS maps 
C Ride Quality Rating Guide Rating  Windshield Survey  
D Potholes Rating  Windshield Survey 
E Rutting Rating  Windshield Survey 
F Washboards Rating  Windshield Survey 
G Loose Aggregate Rating  Windshield Survey 
H Dust Rating Windshield Survey 
I Crown Rating Windshield Survey 
J Drainage  Windshield Survey 
K ADT WYT2/LTAP ADT maps 

 
2. Please fill the required fields as shown in Figure A-6. Mutation rate and initial population size inputs 

are highly dependent on the network size. As a rule of thumb, use high mutation rates with small initial 
population sizes for a higher efficiency while dealing with large networks (i.e. greater than 300 roads).  
 

 
Figure A.6  Sample Inputs to Run the Untreated Gravel Roads Optimization Tool 

3. Click on the “Choose File” button and select the CSV file from step 1.  
4. Click on the “Upload Variables” button to upload the GA variables.  
5. Click on the “Setup GA” button to initialize the algorithm. 
6. Click on the “Run GA” button to run the algorithm. Please follow the numbers shown in Figure 

A.6.  
7. After the convergence of the algorithm, please click on the “Show Optimization Results” button 

to show the optimization results.   

1 
2 

3 4 

5 6 

7 
8 

9 10 

11 12
 

13
 

14
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8. Click the “Save” button to download the optimization results. The results will be a CSV file that 
can be uploaded to Excel for further analysis. 

The tool generates one figure directly with the optimization results. The figure shows a fitness curve that 
displays the optimization progress with time. The optimization results are shown in tabular format. The 
outputs will include service level, required maintenance strategy, predicted gravel road condition, whether 
to fund a project or not and potential project cost. To get the best results and to cope with the stochastic 
nature of the used algorithm, it is highly recommended to run the tool multiple times with different GA 
inputs. After that, a user should compare between the final results and select the most suitable result 
according to his/her discretion.  
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APPENDIX B: IMAGE CLASSIFIER FOR DUST LEVELS ON GRAVEL 
ROADS 

The developed image classifier in this research is considered as AForge.NET class library that provides 
functionality to extract information related to road conditions from images dataset. Currently, the only 
implemented operation is the classification of gravel roads’ dust, but the class library structure is built to 
be able to support a large set of image analysis tasks. The following instructions provide the necessary 
steps to use and run the dust classifier: 
1. Install the Roadroid application on the smartphone that will be used to collect data (Android OS > 

5.0). 
2. Register the phone IMEI number. 
3. The smartphone setup in the vehicle:  

a. The phone should be horizontally/landscape mode as seen in Figure B.1. 
 

 
Figure B.1  Smartphone Setup in the Testing Vehicle 

  

b. It should be easy to reach the display. 
c. Make sure camera lens capture road as seen in Figure B.2.  
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Figure B.2  Example of the Smartphone Position and Location at the Vehicle’s Rear Windshield 

Note: It is recommended to use a good mount car rack quality in order to avoid any data corruption. 
 
4. Tap the Roadroid application icon to start the program and then press the yellow “fitting” button. 
5. Try to park the testing vehicle on flat ground in order to ensure the accuracy of the fitting process.  
6. Adjust the smartphone to X, Y and Z axis close to the zero value as possible. Then, the √ button will 

turn green when you are within the tolerances as seen in Figure B.3. This procedure is important in 
order to ensure that vertical (Y) accelerations is accurately picked exclude influence by braking (X) or 
turning (Z). 

 

 
Figure B.3  Smartphone Adjustment  

7. Capture Dust images of the tested gravel road segments:   
a. As seen from Figure B.4, the top bar displays if GPS is connected, time, memory space, speed, and 

distance surveyed. Also, it shows the current smartphone’s battery temperature. In some cases, 
where the survey is conducted in warm/sunny conditions, overheating is observed. Therefore, it is 
recommended to keep turn on the testing vehicle’s AC in order to cool the smartphone down.  
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Figure B.4  Smartphone Display 

a. It is important to keep the vehicle speed above 15 mph. That is because under 15 mph the 
application will show “low speed” and dust image data is not captured. Also, driving the testing 
vehicle 60 mph will show “high speed” and dust data is not captured either.  

b. Info button gives current survey info. 
 

8. Upload the collected dust images to the web server in order to be analyzed:  
a. Dust images are automatically saved on the smartphone memory while surveying. Also, there is 

no need to have internet (3G/4G) connection to make the surveys. However, a strong and stable 
internet connection (e.g. Wi-Fi) is recommended to upload image data after a survey.   

b. When you are connected, go to Menu-> Manage uploads. Then, upload dust image data to the 
cloud. Generally, photos can vary in size between 500 kb - 2 Mb. 

c. Figure B.5 shows an example of the smartphone application interface for uploading data.  
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Figure B.5  Upload Collecting Data 

9. Go to www.roadroid.com to import the uploaded surveys as seen in Figure B.6. 
 

 
Figure B.6  Roadroid Website Interface 

10. Click on “Details” as shown in Figure B.7 to open the required survey.  
 

http://www.roadroid.com/
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 Figure B.7 Collected Surveys 

11. Click on “Show survey data on a map” as shown in Figure B.8 to view the result of the classification 
process with a GPS-linked images.  

Figure B.8  Process to Open the Required Survey 
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12. A downloadable text file can be generated as shown in Figure B.9. This file contains information, 
such as date, time, location, distance, speed, altitude, and dust rating. 

 

 
Figure B.9  Downloadable Text File 

13. Finally, Figure B.10 illustrates a sample of the images taken from smartphone using the android 
application at a (100 m) interval. 

 
Figure B.10  Sample of the GPS-linked Gravel Road Images 
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APPENDIX C: Dust Measurements for Laramie County 

Descriptive Analysis of The Included Gravel Roads. 

Name County Length 
(Km) 

Width  
(m) 

RQRG Visual Dust 
Classification 

Weather 

Century Hills Rd Laramie 1.6 7.47 7 High Sunny/Dry 

Reeder Rd Laramie 1.6 7.92 8 High Sunny/Dry 

207 & Missle Rd Laramie 1.6 8.50 6 High Sunny/Dry 

143 Rd Laramie 1.6 7.68 5 High Sunny/Dry 

208 Rd Laramie 1.6 9.39 7 High Sunny/Dry 

206 Rd Laramie 1.6 8.59 7 High Sunny/Dry 

Hales Ranch Rd Laramie 1.6 7.07 7 Medium Sunny/Dry 

Spring Beauty Laramie 1.6 7.13 7 Medium Sunny/Dry 

Patrick Rd  Laramie 1.6 6.98 7 Medium Sunny/Dry 

Rd 207 Laramie 1.6 7.95 8 Medium Sunny/Dry 

207 & 143 Rd Laramie 1.6 7.07 8 Medium Sunny/Dry 

144 Rd Laramie 1.6 8.44 7 Medium Sunny/Dry 

146 & 207 Rd Laramie 1.6 7.44 6 Medium Sunny/Dry 

205 Rd Laramie 1.6 7.38 7 Medium Sunny/Dry 

Wlesh Ln seg1 Albany 1.6 7.65 7 Medium Sunny/Dry 

Wlesh Ln seg2 Albany 1.6 7.99 7 Medium Sunny/Dry 

Wlesh Ln seg3 Albany 1.6 8.75 8 Medium Sunny/Dry 

Happy Lack  Albany 1.6 6.52 5 Medium Sunny/Dry 

Wlesh Ln seg4 Albany 1.6 8.29 7 Medium Sunny/Dry 

HR Ranch Rd Laramie 1.6 8.29 7 Low  Sunny/Dry 

Morning Glory Rd Laramie 1.6 6.46 9 Low  Sunny/Dry 

146 Rd Laramie 1.6 6.52 4 Low  Sunny/Dry 

148 Rd Laramie 1.6 9.39 6 Low  Sunny/Dry 

202 Rd  Laramie 1.6 8.90 6 Low  Sunny/Dry 

Stockyards Rd Albany 1.6 8.59 7 Low  Sunny/Dry 

Curtis St  Albany 1.6 7.38 7 Low  Sunny/Dry 

Old Stocky Rd Albany 1.6 7.74 7 Low  Sunny/Dry 

W Curt St Albany 1.6 8.17 6 Low  Sunny/Dry 

Grandview Rd Albany 1.6 9.20 7 Low  Sunny/Dry 

Wlesh Ln seg5 Albany 1.6 8.90 7 Low  Sunny/Dry 
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RQRG Table 

 Rating Speed* (mph) Distresses** 

10 Excellent 60+ - 

9 Very Good 50-60 - 

8 
-------------------- 

7 

Good 
-------------------- 

Good 

45-50 
-------------------- 

40-45 

Dust under dry conditions; Moderate loose 
aggregate; Slight washboarding.  

6 
-------------------- 

5 

Fair 
-------------------- 

Fair 

32-40 
-------------------- 

25-32 

Moderate washboarding (1" - 2" deep) over 
10% - 25% of area; Moderate dust, partial 
obstruction of vision; None or slight rutting 
(less than 1" deep); An occasional small 
pothole (less than 2" deep); Some loose 
aggregate (2" deep). 

4 
-------------------- 

3 

Poor 
-------------------- 

Poor 

20-25 
-------------------- 

15-20 

Moderate to severe washboarding (over 3" 
deep) over 25% of area; Moderate rutting (1" - 
3") over 10% - 25% of area; Moderate 
potholes (2" - 4" deep) over 10% - 25% of 
area; Severe loose aggregate (over 4"). 

2 
-------------------- 

1 

Very Poor 
-------------------- 

Failed 

8-15 
-------------------- 

0-8 

Severe rutting (over 3" deep) over 25% of 
area; Severe potholes (over 4" deep) over 25% 
of area; Many areas (over 25%) with little or 
no aggregate. 

* Passenger car speeds based on surface condition allowing for rider comfort and minimal vehicle wear 
and tear, assuming no safety or geometric constraints force slower travel. 
** Adapted from the Gravel - PASER manual 
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Sample of the Classified Images Using 

 
High Dust  
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Medium Dust  
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Low Dust 
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None- Dust 
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Appendix D: Laramie County Gravel Roads Surface Evaluation Results as of Summer 2017 
 

*GR: Gravel Road; NE: Natural Earth; TG: Treated Gravel; RQRG: Ride Quality Rating Guide rating 

FID SN Zone FROM_
MP 

TO_M
P Road Name Length 

(Miles) 
Speed 
(mph) *RQRG Potholes Rutting Washboards Loose 

Aggregate Dust Crown Drainag
e 

*Aggregate 
Type 

60 1 1 0 0.23 W. Wallick Road U4095 0.230 10 3 1 8 8 8 4 1 1 NE 

146 2 5 0 1.88 Red Canyon Road 1.868 8 1 1 1 8 8 3 1 1 NE 

11 3 1 5 5.7 120-1_Seg_2 0.700 15 2 1 1 8 8 4 1 1 NE 

103 4 3 0 1 146-1_Seg_1 1.000 20 1 1 1 1 7 4 1 1 NE 

663 5 16 2.2 4.5 Lewis Ranch/Indian Hill Road-Seg_2 1.300 8 2 1 1 7 1 3 1 1 NE 

664 6 16 7.78 15.28 Bristol Ridge/Hirsig Road- Seg2 7.500 10 1 1 1 6 7 3 1 1 NE 

700 7 21 1 4.4 Chalk Hill/Bliss Road_Seg_2 3.400 8 2 1 1 7 1 3 1 1 NE 

141 8 4 0 1.89 Bowman Road 1.811 15 2 2 2 2 8 3 1 1 GR 

619 9 12 9.8 14.3 Indian Hill Road 128-2_Seg_3 4.500 20 2 2 2 5 3 1 1 1 NE 

214 10 6 0 0.58 Ritzke Road 118-2 0.754 25 1 3 7 8 8 4 1 1 NE 

325 11 7 0 0.12 Cindy Avenue 0.124 20 3 3 3 7 8 3 1 1 NE 

144 12 5 0.7 2.1 Ferguson Road_Seg_2 1.400 30 4 3 7 8 8 3 3 2 TG 

671 13 18 5 9.94 A-227-1_Seg2 4.940 20 2 3 2 3 7 3 1 1 NE 

165 14 6 0 2.28 Ritzke Road 217-2 2.261 40 3 4 5 8 8 3 2 2 GR 

174 15 6 0 1.59 McKinney Drive U4086 1.595 30 3 4 8 6 8 3 3 3 TG 

185 16 6 0 1.37 Coonrod Road 1.647 35 5 4 5 6 8 3 3 3 TG 

392 17 7 0 1.49 Blue Sky Road 1.465 40 4 4 5 7 6 1 3 3 GR 

412 18 7 0 5.99 Old Highway Durham East 5.812 40 4 4 7 5 7 2 3 3 GR 

666 19 17 0 1 Cattail Road 0.948 25 3 4 4 7 5 2 1 1 NE 

103 20 3 1 0.7 146-1_Seg_2 0.700 40 4 4 7 5 7 2 2 1 GR 

151 21 5 0 4.3 Gilchrist Road_Seg1 4.300 40 4 4 7 6 7 3 3 3 TR 

671 22 18 0 5 A-227-1_Seg1 5.000 50 4 4 6 3 6 1 3 3 GR 

4 23 0 0 7.32 102-1 7.163 40 6 5 7 6 6 2 3 3 TG/GR 

47 24 1 0 0.1 Mitchell Court 0.092 20 5 5 8 9 8 3 3 3 GR 

95 25 3 0 2 A-143-3 1.994 40 5 5 7 6 7 1 3 3 GR 
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101 26 3 0 0.47 Monroe Avenue -Carpenter 0.471 40 5 5 6 7 8 1 2 1 GR 

182 27 6 0 0.7 826-1 0.701 25 4 5 8 6 8 4 1 1 GR 

187 28 6 0 1.6 Thunder Ridge Road 1.598 30 6 5 8 6 7 1 3 3 GR 

225 29 6 0 0.19 Ponderosa Trail 0.186 30 5 5 8 8 8 4 3 3 GR 

245 30 6 0 1.22 624 1.210 30 4 5 8 6 8 4 2 3 TG 

261 31 6 0 0.41 El Camino Real 0.405 30 4 5 8 6 8 4 3 3 GR 

331 32 7 0 0.19 629 0.244 30 4 5 6 8 8 3 1 3 GR 

333 33 7 0 0.64 McCann Avenue 0.126 25 4 5 6 7 8 1 3 3 GR 

509 34 7 0 0.56 Carla Drive U4047 0.369 30 5 5 7 5 7 3 1 1 GR 

516 35 8 0 0.89 A-209-4 1.013 40 4 5 7 4 8 3 3 1 GR 

522 36 8 0 16.8 Hillsdale Road West 16.619 40 5 5 7 5 6 3 3 3 GR 

587 37 11 0 4.06 Ridley Road 4.009 35 5 5 8 6 8 3 3 3 GR 

595 38 11 1 0.998 712 0.466 30 6 5 8 7 8 3 3 3 GR 

610 39 11 0 1.08 Lodgepole Drive 1.062 35 7 5 8 8 8 3 3 3 TG 

616 40 12 6 8.23 136-1 2.010 55 6 5 7 7 7 1 3 3 GR 

620 41 12 0 2.66 Berry Road 2.621 50 6 5 7 7 7 1 3 3 GR 

639 42 13 0 5.4 King Road 5.349 40 5 5 6 5 7 2 2 2 GR 

11 43 1 16.1 19.2 120-1_Seg_6 3.100 40 6 5 6 6 7 2 3 3 GR 

98 44 3 0 1.3 Oline Road_Seg_1 1.300 30 4 5 6 6 7 1 1 1 NE 

586 45 11 0 2.8 Farris Road_Seg_1 2.800 35 5 5 7 7 8 3 3 3 TG 

612 46 12 0 8.1 Divide Road_Seg_1 8.100 45 5 5 7 6 7 2 3 3 GR 

630 47 13 3 6.08 Lyons Road_Seg2 3.080 50 6 5 7 5 7 3 3 3 GR 

631 48 13 4 8 A-220-4_Seg2 4.000 60 5 5 6 5 7 1 3 3 GR 

13 49 1 0 0.43 Beverly Blvd. 0.433 30 7 6 8 8 8 1 3 3 GR 

53 50 1 0 0.15 Hartford Avenue 0.150 20 6 6 8 8 8 3 3 3 GR 

56 51 1 0 0.33 Citrus Street 0.335 30 6 6 8 7 8 2 3 3 GR 

70 52 1 0 0.05 Long Shadow Lane 0.030 8 3 6 3 9 8 4 1 1 NE 

106 53 3 0 2.05 Dump Road 1.543 30 4 6 7 4 7 1 3 3 GR 

108 54 3 3 4.86 151-1 1.994 40 6 6 6 6 8 1 3 3 GR 

118 55 3 0 36.8 Chalk Bluff/""""78"""" Road 36.406 55 6 6 6 6 7 4 3 3 GR 
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135 56 4 0 5.87 A-156-2 5.786 50 6 6 6 5 8 1 3 3 GR 

152 57 5 0 0.93 110-A 0.927 30 7 6 7 7 8 3 3 3 TG 

153 58 5 0 10.8 Crystal Lake Road 10.661 40 5 6 7 4 6 3 3 3 TG/GR 

154 59 5 0 3.56 Romsa Road 3.362 35 7 6 7 8 5 3 3 3 GR 

156 60 5 0 2.07 North Table Mountain 2.058 35 8 6 7 7 7 3 3 2 TG 

167 61 6 0 0.43 A-118-B 0.660 30 5 6 7 8 8 3 3 3 GR 

186 62 6 0 1.94 835 1.937 35 6 6 7 6 7 3 3 3 GR 

221 63 6 0 0.26 Kersey Drive 0.250 30 7 6 8 8 8 4 3 3 GR 

243 64 6 0 0.4 McAllister Lane 0.429 30 5 6 6 7 7 3 1 1 GR 

256 65 6 0 0.51 East Laughlin Road 0.512 30 6 6 8 7 7 3 3 3 GR 

272 66 6 0 3 Milliron Road W,E,N,S 2.994 30 6 6 7 7 6 3 3 3 GR 

280 67 6 0 1.14 Legend Trail 1.134 35 6 6 8 7 7 1 3 3 GR 

295 68 6 0 0.35 Kentucky Street 0.356 30 7 6 8 9 8 4 3 3 GR 

313 69 7 0 0.95 Tate Road 0.988 30 5 6 7 6 8 2 3 3 GR 

323 70 7 3 6.22 136-1 2.777 30 4 6 7 5 7 1 3 3 GR 

363 71 7 0 0.75 Ford Road 0.766 30 5 6 7 6 8 1 3 3 GR 

460 72 7 0 0.44 Pine Bluff Street 0.444 35 5 6 8 6 7 1 3 3 GR 

543 73 8 0 1.02 Landfill Road 1.002 50 6 6 7 6 8 1 3 2 GR 

557 74 8 0 0.51 A-147-2 0.491 50 7 6 8 5 8 1 3 3 GR 

563 75 9 0 0.51 A-211-3 0.488 30 4 6 7 4 7 2 3 3 GR 

564 76 9 0 8.92 Old Highway Pine Bluffs West 9.068 45 5 6 7 4 7 1 3 3 GR 

565 77 9 0 2.01 Macy Road 1.995 30 4 6 7 4 6 1 3 3 GR 

573 78 9 0 1.08 A-162-1 1.069 40 5 6 7 4 7 1 3 3 GR 

590 79 11 0 2.48 Pry Road 2.480 40 5 6 7 8 8 3 3 3 GR 

592 80 11 0 0.85 Morgan Drive 0.876 40 7 6 8 8 8 3 3 3 GR 

598 81 11 0 0.92 Channell Drive 0.911 35 7 6 8 8 8 3 3 3 GR 

600 82 11 0 0.29 742 0.290 30 7 6 8 8 8 3 3 3 TG 

603 83 11 0 0.37 Chugwater Drive 0.367 25 6 6 8 8 7 3 3 3 GR 

609 84 11 0 0.91 Petersen Drive 0.911 30 5 6 7 8 8 4 3 3 GR 

617 85 12 0 0.41 Continental Road 0.474 30 6 6 7 6 8 2 3 3 GR 
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683 86 19 0 0.53 A-158-7 0.538 45 6 6 7 6 7 1 3 3 GR 

704 87 23 0 6.18 Coad Road 6.061 45 6 6 6 6 7 1 3 3 GR 

11 88 1 11.1 16.1 120-1_Seg_5 5.000 40 7 6 6 7 8 3 3 3 TG 

111 89 3 0 4 Arcola Road_Seg_1 4.000 55 5 6 6 5 7 1 3 3 GR 

572 90 9 4 8.25 A-161-3_Seg2 4.250 50 6 6 7 6 6 1 3 3 GR 

586 91 11 2.8 6.1 Farris Road_Seg_2 3.300 35 5 6 4 8 8 3 3 3 GR 

619 92 12 0 6.4 Indian Hill Road 128-2_Seg_1 6.400 45 7 6 6 7 8 2 3 3 GR 

631 93 13 0 4 A-220-4_Seg1 4.000 60 6 6 7 6 7 1 3 3 GR 

640 94 13 6 11 Ogle Road_Seg2 5.000 60 6 6 7 6 7 1 3 3 GR 

648 95 14 0 5 Berggren Road_Seg1 5.000 50 6 6 7 6 7 1 3 3 GR 

648 96 14 5 9.5 Berggren Road_Seg2 4.500 50 6 6 5 6 7 1 3 3 GR 

654 97 14 0 5 Lindbergh Road North_Seg1 5.000 50 6 6 7 6 7 1 3 3 GR 

654 98 14 5 10.7 Lindbergh Road North_Seg2 5.700 50 6 6 7 6 7 1 3 3 GR 

657 99 14 0 2.4 158-4_Seg1 2.400 30 5 6 4 6 6 1 1 1 NE 

668 100 17 0 1 Indian Hill Road 131-3_Seg_1 1.000 30 4 6 5 7 6 1 1 2 NE 

694 101 19 0 1 Larson Road_Seg1 1.000 30 4 6 6 6 7 1 1 1 NE 

709 102 23 0 4 Hunter Ranch Road_Seg1 4.000 35 5 6 3 6 3 1 2 2 NE 

14 103 1 0 0.28 800 0.308 30 7 7 8 8 8 1 3 3 GR 

35 104 1 0 0.33 Division Road 0.216 30 7 7 7 7 8 2 3 3 GR 

48 105 1 0 0.2 Apple Street 0.200 30 7 7 8 8 8 3 3 2 GR 

50 106 1 0 0.44 Third Avenue 0.442 30 6 7 8 8 6 3 3 3 GR 

57 107 1 0 0.22 Milatzo Avenue 0.216 30 7 7 8 7 8 3 3 3 GR 

79 108 2 0 0.04 Lake Place 0.046 10 7 7 8 8 8 2 2 2 GR 

80 109 2 0 0.21 Drew Court 0.209 15 7 7 7 7 8 1 3 2 GR 

91 110 2 0 1.53 Rosetta Lane 1.530 40 7 7 8 6 7 1 3 3 GR 

93 111 3 0 1.07 A-141-2 0.992 45 7 7 6 6 7 3 3 2 GR 

102 112 3 0 0.14 408 0.197 30 7 7 7 8 8 1 1 1 GR 

105 113 3 0 3.85 A-147-1 3.827 45 6 7 7 6 8 1 3 3 GR 

107 114 3 0 1.77 Ragland Road 1.756 55 8 7 7 8 8 1 2 2 NE 

110 115 3 0 3.03 Miller Road West 144-1 2.996 60 7 7 8 7 6 1 3 3 GR 
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112 116 3 0 0.3 Fifth St. -Carpenter 0.306 30 7 7 7 7 8 2 2 1 GR 

113 117 3 0 0.27 First St. -Carpenter 0.301 30 7 7 7 7 8 2 2 1 GR 

116 118 3 0 0.37 Second St. -Carpenter 0.369 30 7 7 7 7 8 2 2 1 GR 

122 119 3 0 1.01 Glassburn Road 0.997 40 5 7 7 5 8 2 1 1 GR 

133 120 4 0 2.02 Edwards Road 1.999 60 8 7 6 6 7 1 3 3 GR 

134 121 4 0 2.74 Bauman Road 2.836 60 6 7 6 7 8 2 2 2 GR 

137 122 4 3 5.85 158-1 2.991 60 6 7 6 7 8 1 3 3 GR 

138 123 4 0 2.776 158-1 2.777 50 7 7 7 7 8 1 3 3 GR 

142 124 4 0 6.07 Suchomel Road 5.991 50 6 7 4 6 8 1 2 2 GR 

145 125 5 0 4.18 N. Crow Rd 3.824 30 5 7 8 5 8 3 1 1 NE 

159 126 5 0 1.63 E & S Mule Trl. 1.613 35 6 7 8 7 6 4 3 3 GR 

162 127 5 0 0.15 Stable Drive 0.155 5 3 7 2 9 9 4 1 1 NE 

168 128 6 0 1.01 Blazer Road 1.000 35 7 7 8 8 7 2 3 3 GR 

173 129 6 0 0.6 Rolling HIlls Road 0.598 30 6 7 8 7 8 3 3 3 GR 

183 130 6 0 0.62 Orion Drive 0.609 30 7 7 8 8 8 4 3 3 GR 

188 131 6 0 1.84 Morning Star Road 1.841 30 6 7 7 6 7 2 3 3 GR 

190 132 6 0 1.63 888 1.629 30 7 7 7 8 7 3 3 3 GR 

195 133 6 0 0.14 Iron Mountain Lane 0.135 30 7 7 8 8 8 3 3 3 GR 

200 134 6 0 0.08 DeCastro Drive 0.125 30 6 7 8 8 8 3 3 3 GR 

212 135 6 0 0.18 Road 116 0.179 30 7 7 8 8 8 4 1 1 GR 

215 136 6 0 0.98 Military Road 1.041 30 6 7 8 7 8 4 3 3 TG 

216 137 6 0 0.49 Riding Club Road 0.483 30 7 7 8 8 8 3 3 3 GR 

219 138 6 0 0.38 Utah Street 0.364 25 7 7 8 8 8 3 3 3 GR 

230 139 6 0 0.51 Lupe Road 0.512 30 6 7 7 8 8 4 3 2 GR 

232 140 6 0 0.68 Hackamore Road 0.683 25 7 7 8 7 8 4 3 3 GR 

238 141 6 0 0.26 Monte Carlo Drive 0.253 30 6 7 8 7 8 3 3 3 GR 

240 142 6 0 0.25 Skyline Drive 574 0.246 30 6 7 8 8 8 4 2 1 GR 

246 143 6 0 1 Barrington Road 0.992 30 7 7 8 7 6 2 3 3 GR 

257 144 6 0 0.69 Silver Spur Road 0.684 30 7 7 8 8 8 3 3 3 GR 

276 145 6 0 0.7 Star Valley Drive 0.697 30 7 7 8 8 8 3 3 3 GR 
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278 146 6 0 0.59 836 0.589 30 7 7 8 8 8 3 3 3 GR 

279 147 6 0 0.43 Foxhill Road 0.432 30 7 7 8 8 7 2 3 3 GR 

288 148 6 0 0.23 W. Idaho Street 0.235 20 7 7 8 7 8 3 3 3 GR 

296 149 6 0 0.37 Michigan Street 0.372 30 7 7 8 8 8 3 3 3 GR 

336 150 7 1 0.63 Laramie St 0.121 30 6 7 7 8 8 2 3 3 GR 

339 151 7 0 0.52 645 0.512 35 7 7 8 7 8 3 3 1 GR 

351 152 7 0 0.36 Albin Lane 0.365 30 7 7 8 7 7 3 3 3 GR 

352 153 7 0 0.46 Kaycee Place 0.453 30 6 7 8 6 7 3 3 3 GR 

354 154 7 0 1.18 Obsidian Road 1.168 40 5 7 8 5 8 1 3 3 GR 

364 155 7 0 0.24 Anthoney Road 0.259 10 2 7 3 8 7 3 1 1 GR 

368 156 7 0 0.12 Jillian Drive 0.127 30 8 7 8 8 8 2 3 3 GR 

372 157 7 0 0.62 821 0.622 35 6 7 8 6 7 1 3 3 GR 

373 158 7 0 0.62 822 0.622 35 6 7 8 6 7 1 3 3 GR 

377 159 7 0 3.08 Hales Ranch Road 3.097 40 7 7 7 7 6 1 3 3 GR 

380 160 7 0 3.07 HR Ranch Road 3.077 40 6 7 7 7 6 1 3 3 GR 

381 161 7 0 0.25 Morgan Ranch Road 0.252 30 7 7 8 7 8 1 3 3 GR 

403 162 7 1 1.49 Thomas Road 0.993 40 7 7 8 7 8 3 3 3 GR 

407 163 7 0 0.77 137-1, Skyway Ave. 0.749 30 6 7 8 6 8 1 3 3 GR 

415 164 7 0 0.48 John Drive 0.480 25 7 7 7 7 7 1 3 3 GR 

425 165 7 0 0.88 GLencoe Drive 0.871 35 6 7 7 7 7 3 3 2 GR 

431 166 7 0 1.03 597 0.845 30 5 7 7 4 6 1 3 3 GR 

433 167 7 0 1.02 Chief Twomoon Road 1.009 30 6 7 7 6 6 1 3 3 GR 

441 168 7 0 0.13 Craigy-J Drive 0.114 30 6 7 8 6 8 1 3 3 GR 

452 169 7 0 0.3 Farthing Road 0.294 30 6 7 7 7 8 1 3 3 GR 

455 170 7 0 0.31 Woodhouse Road 0.213 30 7 7 8 8 8 2 3 3 GR 

458 171 7 0 1.04 Cody Lane 1.194 30 6 7 8 7 7 3 3 3 GR 

461 172 7 0 1.01 Agate Road 0.994 45 7 7 8 7 8 1 3 3 GR 

463 173 7 0 0.6 Turqoise Road 0.591 40 7 7 8 7 8 1 3 3 GR 

474 174 7 0 1.06 Powderhouse Road 1.047 30 5 7 7 5 7 1 3 3 GR 

483 175 7 0 1.06 Red Fox Road 1.045 30 6 7 7 6 7 1 3 3 GR 
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518 176 8 0 1.68 Louth Road 1.748 40 6 7 6 6 8 1 1 1 NE 

519 177 8 12 18.47 215-3 6.029 60 6 7 7 6 7 1 3 3 GR 

521 178 8 0 1.36 McWilliams Road 1.366 40 5 7 4 5 8 1 1 2 NE 

525 179 8 0 0.15 Higday Road 0.154 25 6 7 8 5 8 1 3 3 GR 

533 180 8 1 3.86 A-148-4 3.165 60 6 7 7 6 6 1 2 3 GR 

536 181 8 0 0.5 A-150-2 0.561 50 8 7 8 7 8 1 2 2 GR 

539 182 8 0 28.38 Hillsdale North Road/Midway 28.104 50 6 7 7 6 8 1 3 3 GR 

544 183 8 0 0.87 Paradise Drive 0.857 50 8 7 8 7 7 3 3 3 GR 

545 184 8 0 0.13 Coates Avenue-Hillsdale 0.138 25 7 7 6 7 8 2 1 1 NE 

547 185 8 0 0.2 Third Street-Hillsdale 0.203 25 8 7 7 8 8 2 2 1 NE 

554 186 8 0 0.89 Summerset Drive 0.867 50 7 7 7 6 6 3 3 3 GR 

561 187 9 0 1.2 A-208-2 1.198 50 7 7 8 7 8 2 3 3 GR 

562 188 9 0 6.05 A-210-4 5.986 45 6 7 7 7 8 1 3 3 GR 

571 189 9 0 2.48 A-161-2 2.449 50 7 7 7 7 8 1 3 3 GR 

574 190 9 0 2.02 Potato Plant Road West 2.000 50 6 7 7 5 8 1 3 3 GR 

575 191 9 0 2.15 Wisroth Road 2.137 50 6 7 7 6 7 2 3 3 GR 

579 192 9 0 2.23 A-158-2 2.230 60 6 7 8 6 8 1 3 3 GR 

602 193 11 0 1.02 Federer Road 0.993 35 6 7 8 7 8 3 3 3 GR 

611 194 11 0 1.01 Bridger Drive 0.998 30 7 7 8 8 7 3 3 3 GR 

613 195 12 0 5 Keslar Road 4.954 50 6 7 7 6 7 1 3 3 GR 

615 196 12 0 2.37 Epler Road 2.354 50 6 7 7 6 7 1 3 3 GR 

622 197 12 0 1 A-139-3 0.992 30 7 7 8 7 8 1 3 3 GR 

624 198 12 0 0.66 Chrysler Road 0.683 30 8 7 7 8 8 1 3 3 GR 

626 199 12 0 0.64 Studebaker Road 0.613 30 8 7 7 8 7 2 3 3 GR 

633 200 13 0 1 A-147-3 0.987 60 7 7 7 6 7 1 3 3 GR 

637 201 13 0 2.04 Martin Road 2.047 60 7 7 7 6 8 1 3 3 GR 

641 202 13 0 7.04 Golden Prairie Road 6.969 60 7 7 7 7 6 1 3 3 GR 

642 203 14 0 4.07 Scheel Road 4.052 50 7 7 6 6 6 1 3 3 GR 

644 204 14 0 1.13 A-224-3 1.464 50 6 7 7 7 5 1 3 3 GR 

649 205 14 0 2.01 A-164-2 1.993 50 6 7 6 7 5 1 3 3 GR 
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655 206 14 0 4.37 Zimmerman Road 4.321 50 7 7 7 7 7 1 3 3 GR 

660 207 15 0 2.16 Quarry Road 2.235 45 8 7 8 8 7 2 3 3 NE/GR 

670 208 17 0 2.95 Boughsty Road 2.915 50 7 7 7 8 7 1 2 2 NE 

680 209 19 0 1.01 A-231-1 0.994 45 7 7 8 7 7 1 3 3 GR 

684 210 19 0 5.06 A-159-4 5.000 45 6 7 7 6 7 1 3 3 GR 

705 211 23 1 4.69 150-6 3.695 60 8 7 7 7 7 1 3 3 GR 

708 212 23 0 2.14 Petsch Road 2.115 40 7 7 7 7 5 1 2 2 GR 

710 213 23 0 4.71 Schliske Road 4.661 40 5 7 6 7 2 1 2 3 NE 

711 214 23 0 1.58 A-152-5 1.565 40 6 7 6 7 6 1 2 1 NE 

11 215 1 0 5 120-1_Seg_1 5.000 55 7 7 5 6 7 1 3 2 GR 

11 216 1 5.7 6.9 120-1_Seg_3 1.200 30 4 7 5 7 8 3 3 3 GR 

99 217 3 0.5 1.5 A-205-1_Seg_2 1.000 45 7 7 8 7 7 2 3 3 GR 

100 218 3 0 6 Pulver Road_Seg_1 6.000 60 8 7 8 7 6 1 3 3 GR 

111 219 3 4 11 Arcola Road_Seg_2 7.000 60 7 7 7 7 6 1 3 3 GR 

117 220 3 0 1 A-201-Seg2 1.000 30 6 7 6 7 7 1 1 1 NE 

132 221 4 8 12 154-1_Seg2 4.000 60 7 7 8 7 7 1 3 3 GR 

132 222 4 15 23 154-1_Seg4 8.000 60 7 7 7 7 8 1 3 3 GR 

532 223 8 0 5 Tremble Road_Seg_1 5.000 50 7 7 8 7 6 2 3 3 GR 

589 224 11 3.6 6 Holmes Road_Seg_2 2.400 35 5 7 5 7 8 1 3 3 GR 

612 225 12 8.1 12 Divide Road_Seg_2 3.900 45 7 7 7 6 7 2 3 3 GR 

614 226 12 0 3.05 Jay Road_Seg_2 3.006 40 8 7 7 8 8 1 3 3 GR 

619 227 12 6.4 9.8 Indian Hill Road 128-2_Seg_2 3.400 45 8 7 7 8 8 3 2 2 GR 

640 228 13 0 6 Ogle Road_Seg1 6.000 60 8 7 7 7 7 1 3 3 GR 

653 229 14 0 5 Lindbergh Road_Seg1 5.000 50 7 7 7 6 7 1 3 3 GR 

653 230 14 5 10 Lindbergh Road_Seg2 5.000 50 8 7 7 7 7 2 3 3 GR 

657 231 14 2.4 4.3 158-4_Seg2 1.900 40 6 7 6 5 6 1 3 3 GR 

663 232 16 0 2.2 Lewis Ranch/Indian Hill Road-Seg_1 2.200 45 5 7 6 8 7 3 1 1 NE 

667 233 17 5 7.86 Kirkbride Road_Seg_2 2.860 50 7 7 6 7 6 1 3 3 GR 

694 234 19 1 2 Larson Road_Seg2 1.000 45 7 7 7 7 7 1 3 3 GR 

709 235 23 4 6.84 Hunter Ranch Road_Seg2 2.840 50 7 7 7 7 7 1 3 3 GR 
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0 236 0 0 3.72 Remount Road 3.651 40 7 8 8 7 8 3 3 2 TG 

2 237 0 0 0.15 Cougar Lane 0.153 30 8 8 8 8 7 3 3 3 TG 

6 238 0 0 0.4 Jaymers Lane 0.399 30 6 8 7 8 7 3 2 2 GR 

7 239 0 0 0.4 Louise Lane 0.411 30 6 8 8 8 6 3 3 3 GR 

15 240 1 0 0.06 Elmwood Court 0.049 30 8 8 8 8 8 3 3 3 GR 

16 241 1 0 0.38 Rawhide Ridge 0.373 30 7 8 7 7 7 1 3 3 GR 

17 242 1 0 0.13 Blue Roan Road 0.107 30 8 8 8 8 8 3 2 3 GR 

18 243 1 0 0.44 854 0.412 30 8 8 8 8 8 2 3 3 GR 

19 244 1 0 0.4 Troyer drive 0.399 30 8 8 8 8 7 1 3 3 GR 

20 245 1 0 0.2 880 0.216 30 8 8 8 8 7 1 3 3 GR 

21 246 1 0 0.08 881 0.084 20 7 8 8 8 6 3 2 1 GR 

22 247 1 0 0.09 Scofield Court 0.093 20 8 8 8 8 8 1 3 2 GR 

25 248 1 0 0.12 Woodenshoe Drive 0.121 20 7 8 8 9 8 4 1 2 NE 

26 249 1 0 0.25 Avenue B-6 0.249 30 8 8 8 8 8 3 3 1 GR 

28 250 1 0 0.06 Blossom Court 0.059 10 8 8 8 9 8 3 3 1 GR 

29 251 1 0 0.5 Fifth Avenue 0.494 30 7 8 8 8 8 3 3 2 GR 

30 252 1 0 0.45 Fourth Avenue 0.441 30 7 8 8 8 8 3 3 2 GR 

31 253 1 0 0.06 Greene Acres Court 0.060 10 8 8 8 9 8 3 3 1 GR 

32 254 1 0 0.31 Second Avenue 0.310 30 8 8 8 8 8 3 3 3 GR 

33 255 1 0 0.2 Lampman Court 0.192 30 8 8 8 8 7 2 3 3 GR 

34 256 1 0 0.49 York Avenue 0.495 30 8 8 8 8 7 3 3 3 GR 

36 257 1 0 0.66 469 0.938 30 6 8 8 6 7 1 3 3 GR 

37 258 1 0 0.06 Colt Court 0.049 15 9 8 8 8 9 4 2 2 GR 

38 259 1 0 0.6 Remington Way 0.585 30 8 8 8 8 7 1 3 3 GR 

39 260 1 0 0.21 Avenue B 0.203 30 8 8 8 8 8 1 2 2 GR 

40 261 1 0 0.3 Avenue B-4 0.297 30 8 8 8 8 8 1 3 3 GR 

41 262 1 0 0.24 Hyndman Road 0.245 30 8 8 8 8 8 3 2 2 GR 

49 263 1 0 0.41 Cherry Street 0.410 30 8 8 8 9 8 3 3 3 GR 

51 264 1 0 0.25 Draper Road 0.189 30 7 8 7 8 7 3 2 1 GR 

52 265 1 0 0.09 Mitchell Place 0.091 20 8 8 8 9 8 1 3 3 GR 
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54 266 1 0 0.2 Hellwig Road 0.193 30 8 8 8 8 7 3 3 3 GR 

55 267 1 0 0.88 S. Avenue B-6 0.877 30 8 8 8 7 7 3 3 3 GR 

58 268 1 0 0.14 Terry Road North 0.142 30 8 8 8 8 8 2 3 3 GR 

59 269 1 0 0.25 Terry Road South 0.248 30 8 8 8 8 8 2 2 3 GR 

61 270 1 0 0.42 Nation Road 462 0.411 30 8 8 8 8 8 2 3 3 GR 

62 271 1 0 0.09 Remington Court 0.084 30 8 8 8 8 8 3 2 3 GR 

63 272 1 0 0.24 Savage Drive 0.239 30 9 8 8 8 8 1 3 3 GR 

64 273 1 0 0.53 Scott Drive 0.524 30 7 8 7 6 7 1 3 3 GR 

65 274 1 0 0.96 Weatherby Drive 0.950 30 8 8 8 8 8 3 2 3 GR 

66 275 1 0 0.35 Winchester Blvd. 0.358 30 7 8 8 7 8 1 3 3 GR 

67 276 1 0 0.75 Pearl Court 0.798 30 8 8 7 8 7 1 2 3 GR/NE 

68 277 1 0 0.25 Willson Court 0.246 30 8 8 8 8 7 1 3 3 GR 

69 278 1 0 0.27 Caballo Trail 0.216 30 7 8 7 8 7 1 3 3 GR 

71 279 1 0 0.18 Remington Drive 0.190 30 7 8 8 8 7 3 2 3 GR 

72 280 1 0 0.46 Redhawk Drive 0.464 30 8 8 8 8 8 1 3 3 GR 

73 281 2 0 0.51 Blue Bell Trail 0.502 35 7 8 7 8 7 1 3 3 NE 

74 282 2 0 0.5 Primrose Trail 0.503 35 7 8 7 7 7 1 3 2 NE 

75 283 2 0 0.5 Wild Rose Trail 0.491 40 8 8 7 8 6 1 3 3 NE 

76 284 2 0 0.12 Avenue C-3 0.124 20 8 8 5 8 8 2 2 1 NE 

77 285 2 0 0.13 Turk Court 0.122 20 8 8 7 8 8 2 2 1 NE 

81 286 2 0 0.1 Kopsa Court 0.091 20 8 8 7 8 8 2 3 2 GR 

83 287 2 0 0.5 Brome Road 0.509 30 6 8 8 7 7 2 3 3 GR 

85 288 2 0 0.63 Persons Road 0.622 30 8 8 8 7 8 3 2 2 GR 

86 289 2 0 0.5 Shooting Star Trail 0.504 35 6 8 7 7 7 1 3 3 NE 

87 290 2 0 0.25 Sunbright Trail 0.252 35 8 8 7 8 7 1 3 3 NE 

88 291 2 0 0.06 Golden Rod Trail 0.245 35 7 8 7 8 7 2 1 2 NE 

89 292 2 0 0.26 Blue Gramma Road 0.251 30 7 8 8 8 7 2 3 3 GR 

90 293 2 0 0.5 Fox Tail Road 0.508 30 7 8 8 7 7 1 3 3 GR 

92 294 3 0 1.58 140-1 1.489 45 8 8 8 7 8 2 3 3 GR 

94 295 3 0 1.91 Breeden Road 1.899 50 8 8 7 7 8 1 1 1 NE 
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96 296 3 0 5.73 Noyer Road 5.622 55 8 8 8 8 8 1 3 3 GR 

97 297 3 0 3 Hermann Road 2.972 60 8 8 8 8 7 1 3 3 GR 

104 298 3 0 7.985 146-1 7.985 55 8 8 8 8 4 1 3 3 GR 

114 299 3 0 0.06 Fourth St. -Carpenter 0.067 30 8 8 7 8 8 2 2 1 GR 

115 300 3 0 0.11 Madison Ave. -Carpenter 0.171 30 6 8 7 8 8 3 1 1 GR 

120 301 3 0 0.35 Adams Ave. - Carpenter 0.342 30 8 8 8 8 8 2 1 1 GR 

121 302 3 0 0.36 Patches Road 0.438 25 8 8 8 8 6 1 3 3 NE 

125 303 3 0 1.01 Kranz Road 1.000 40 6 8 5 8 7 1 1 1 NE 

127 304 4 0 1.8 A-204-2 1.995 60 7 8 7 8 8 1 3 3 GR 

128 305 4 0 1 A-204-3 0.995 50 7 8 7 8 7 1 1 1 NE 

129 306 4 3 7.86 153-1 4.990 60 7 8 6 8 7 1 2 2 GR 

130 307 4 0 2.806 153-1 2.806 60 8 8 7 8 8 3 3 3 GR 

131 308 4 0 2.797 154-1 2.797 60 7 8 6 8 6 1 3 3 GR 

136 309 4 0 1 A-157-1 0.999 60 8 8 7 8 8 1 3 3 GR 

139 310 4 0 1.01 A-205-3 1.002 40 6 8 6 5 7 1 2 2 GR 

140 311 4 0 2.8 Jennings Road 2.807 45 7 8 7 8 8 2 2 3 GR 

148 312 5 0 2.13 South Table Mountain 2.139 45 7 8 8 7 6 3 2 3 NE 

149 313 5 0 0.75 Blue Mountain Road 0.739 35 6 8 8 7 8 4 3 3 NE 

150 314 5 0 0.6 W Plains Road 0.605 35 8 8 7 8 8 4 3 3 GR 

155 315 5 0 1.36 Crow Creek Road 1.368 45 8 8 8 7 8 3 3 3 TG 

158 316 5 0 4.01 Valley View Drive 3.822 30 7 8 8 6 8 3 2 2 TG 

160 317 5 0 0.82 Prairie View Road 0.813 35 8 8 8 8 7 4 3 3 GR 

161 318 5 0 1.08 Spring Creek Road 1.094 35 7 8 7 8 7 4 3 3 GR 

164 319 6 0 0.87 Adolphson Road 0.995 30 7 8 8 8 7 2 1 1 NE 

166 320 6 0 1.03 A-118-A 1.036 30 6 8 6 8 8 3 2 3 NE 

171 321 6 0 1 Cox Drive 0.986 30 7 8 8 6 8 3 3 3 GR 

172 322 6 0 0.82 Healy Road 0.781 30 5 8 8 6 7 3 3 3 GR 

175 323 6 0 0.45 Elling Road 0.418 30 8 8 8 8 8 4 3 3 GR 

176 324 6 0 0.28 Phillips Place 0.279 30 8 8 8 8 8 4 3 3 GR 

177 325 6 0 0.87 Treadway Trail 0.863 30 7 8 8 9 7 4 3 3 TG 



113 
 

178 326 6 0 0.43 Carls Road 0.407 30 7 8 8 8 6 3 3 3 GR 

179 327 6 0 0.31 Draw Drive 0.305 30 7 8 8 8 8 3 3 3 GR 

180 328 6 0 0.51 Ninemile Blvd. 0.507 30 7 8 8 8 7 3 3 3 GR 

181 329 6 0 0.77 Bell Lane 0.764 25 7 8 8 7 8 3 2 2 GR 

191 330 6 0 0.38 889 0.373 30 8 8 8 8 6 3 3 3 GR 

192 331 6 0 0.15 890 0.159 30 8 8 8 8 8 3 3 3 GR 

193 332 6 0 0.17 891 0.182 30 8 8 8 8 8 3 3 3 GR 

194 333 6 0 0.21 892 0.213 30 8 8 8 8 8 3 3 3 GR 

196 334 6 0 0.77 Quarter Circle Drive 0.757 30 6 8 8 8 8 3 3 3 GR 

197 335 6 0 0.32 Arabian Lane 0.320 30 8 8 8 8 8 2 3 3 GR 

198 336 6 0 0.51 Buck Brush Road 0.493 30 7 8 8 8 8 4 3 3 GR 

199 337 6 0 0.08 Chief Drive 0.086 30 8 8 8 8 8 3 3 3 GR 

201 338 6 0 0.38 Donald Drive 0.374 30 8 8 8 8 8 3 3 3 GR 

202 339 6 0 0.2 McGarry Drive 0.210 30 8 8 8 8 8 4 3 3 GR 

203 340 6 0 0.31 Arizona Street 0.362 25 8 8 8 9 8 3 3 3 GR 

204 341 6 0 0.25 E. Dona Street 0.249 30 4 8 6 8 8 4 3 3 GR 

209 342 6 0 0.36 E & W Polo Plate 0.354 30 8 8 8 8 8 2 3 3 GR 

213 343 6 0 0.85 Koster Road 0.837 30 6 8 8 8 8 4 1 3 NE 

218 344 6 0 3.5 Klipstein Road 3.446 40 7 8 8 8 6 1 3 3 GR 

220 345 6 0 0.74 Wind Dancer Road 0.754 30 8 8 8 8 8 3 3 3 GR 

222 346 6 0 0.2 Morhia Lane 0.206 30 8 8 8 8 8 4 3 3 GR 

223 347 6 0 0.51 Wayne Road 0.503 30 8 8 8 8 7 4 3 3 GR 

226 348 6 0 0.52 East Powell Road 0.511 30 7 8 8 9 8 4 3 3 GR 

229 349 6 0 1.01 Deer Brooke Trail 1.012 30 7 8 8 8 7 3 3 3 GR 

233 350 6 0 0.09 Blue Sky Drive 0.083 30 8 8 8 8 8 4 3 3 GR 

234 351 6 0 0.38 Bronco Trail 0.379 30 8 8 8 8 8 4 3 3 GR 

235 352 6 0 0.7 Concha Loop 0.715 25 8 8 8 8 8 4 3 3 GR 

236 353 6 0 0.16 Jim Court 0.155 30 8 8 8 8 7 3 3 3 GR 

237 354 6 0 0.91 Ranch Loop 0.914 30 8 8 7 7 7 3 3 3 GR 

244 355 6 0 0.49 Burke Drive 0.485 30 6 8 7 7 7 3 3 3 GR 



114 
 

247 356 6 0 0.39 DeGraw Drive 0.390 30 8 8 8 8 8 4 3 3 GR 

248 357 6 0 0.52 Rucker Road 0.499 30 7 8 8 7 8 4 3 3 GR 

249 358 6 0 0.41 Twin Mountain Road 0.407 25 8 8 8 8 8 4 3 3 GR 

250 359 6 0 0.48 Pole Mountain Road 0.469 30 7 8 7 8 8 3 3 3 GR 

255 360 6 0 0.13 Lariat Loop 0.124 25 8 8 8 8 8 4 3 3 GR 

258 361 6 0 0.18 Clear View Circle 0.175 25 8 8 8 8 8 3 2 2 GR 

259 362 6 0 0.15 Hidden Valley Road 0.143 30 8 8 8 8 8 4 3 3 GR 

260 363 6 0 0.14 Kelper Drive 0.139 30 8 8 8 8 8 4 3 3 GR 

262 364 6 0 0.18 San Mateo Place 0.173 30 8 8 8 8 8 4 3 3 GR 

264 365 6 0 0.09 Trinidad Ct 0.092 30 8 8 8 8 8 4 3 3 GR 

265 366 6 0 0.25 Ventura Drive 0.247 30 8 8 8 8 8 4 3 3 GR 

266 367 6 0 0.5 Astronaut Drive 0.505 30 8 8 8 8 8 3 3 3 GR 

267 368 6 0 0.82 Eagle Drive 0.811 30 7 8 7 8 7 3 3 3 GR 

268 369 6 0 0.75 Space Drive 0.743 30 8 8 7 7 8 4 3 3 GR 

270 370 6 0 0.77 Cattleman's Drive 0.758 30 6 8 8 8 6 2 3 3 GR 

271 371 6 0 0.13 Horse Creek Road 0.107 30 7 8 8 8 5 2 2 3 GR 

273 372 6 0 1.26 North Star Loop 1.252 30 8 8 8 8 7 3 3 3 GR 

274 373 6 0 0.12 Pegasus Point 0.116 30 8 8 8 8 8 4 3 3 GR 

275 374 6 0 0.13 Polaris Point 0.124 30 9 8 8 8 8 3 3 3 GR 

277 375 6 0 0.07 Granada Trail 0.071 20 7 8 8 8 6 3 1 1 GR 

282 376 6 0 0.14 Evening Star Court 0.138 30 8 8 7 8 8 4 3 3 GR 

283 377 6 0 0.15 Star Hill Court 0.147 30 7 8 8 8 8 4 3 3 GR 

284 378 6 0 0.13 Stardust Trail 0.139 30 8 8 8 8 8 3 3 3 GR 

285 379 6 0 0.13 Twilight Court 0.134 30 8 8 8 8 8 3 3 3 GR 

286 380 6 0 0.26 893 0.268 30 7 8 8 8 7 3 3 3 GR 

289 381 6 0 0.35 Portugee Phillips Road 0.343 30 8 8 8 8 8 3 3 3 GR 

290 382 6 0 0.25 Beulah Avenue 0.243 30 6 8 6 8 7 3 3 3 GR 

291 383 6 0 0.43 Crestview Drive 0.433 20 8 8 9 9 8 4 3 3 GR 

292 384 6 0 0.27 David Street 0.260 30 6 8 8 8 8 3 3 3 GR 

294 385 6 0 0.19 Kansas City 0.187 30 8 8 8 8 8 3 3 3 GR 
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297 386 6 0 0.83 Branding Iron Drive 0.815 25 8 8 8 8 8 4 3 3 GR 

298 387 6 0 0.58 Carbine Trail 0.578 25 8 8 8 8 8 3 3 3 GR 

299 388 6 0 0.23 Chaparral Road 0.221 30 8 8 8 8 8 4 3 3 GR 

300 389 6 0 0.08 Summer Hill Court 0.072 8 8 8 9 8 8 3 3 3 GR 

304 390 6 0 0.48 West Powell Road 523 0.472 30 8 8 8 8 7 3 3 3 GR 

305 391 6 0 0.25 West Powell Road 524 0.241 30 7 8 8 7 8 4 2 1 GR 

314 392 7 0 2 212-3 2.000 30 8 8 8 7 8 1 3 3 GR 

321 393 7 0 2.52 132-1 2.536 15 8 8 8 8 7 3 3 3 GR 

322 394 7 0 2.02 Meridan Blvd 2.003 40 9 8 8 8 8 4 3 3 TR/GR 

326 395 7 103 103.86
8 613 1.123 20 8 8 8 8 6 3 2 1 GR 

328 396 7 0 0.12 616 0.124 30 8 8 8 8 8 3 1 1 NE 

330 397 7 0 0.52 628 0.340 30 8 8 8 8 8 1 1 2 GR 

332 398 7 0 0.13 631 0.126 30 8 8 8 8 8 3 3 3 GR 

334 399 7 0 0.56 634 0.123 30 8 8 8 8 8 3 3 3 GR 

337 400 7 0 1 Empire Drive 0.993 30 8 8 8 8 7 1 3 3 GR 

338 401 7 0 0.75 Geronimo Road 0.744 30 8 8 8 8 7 1 3 3 GR 

341 402 7 0 0.45 647 0.449 30 6 8 6 8 6 3 3 1 NE 

344 403 7 0 0.68 Archie's Road 0.660 30 8 8 8 8 7 1 2 3 GR 

345 404 7 0 0.09 Haunted Road 0.099 30 8 8 8 8 8 3 3 3 GR 

346 405 7 0 0.27 Hinesley Road 0.265 30 8 8 8 8 8 2 3 3 GR 

347 406 7 0 0.5 Blue Mesa Road 0.495 35 8 8 8 8 8 2 3 3 GR 

348 407 7 0 0.13 Red Mesa Road 0.133 35 8 8 8 8 8 3 3 3 GR 

349 408 7 0 0.4 Whitney Road 0.394 30 8 8 7 7 8 1 3 3 GR 

350 409 7 0 0.98 Piper Lane 0.971 40 8 8 8 8 7 1 3 3 GR 

353 410 7 0 0.48 Feldspar Road 0.485 40 7 8 8 7 8 1 3 3 GR 

355 411 7 0 1.01 Denise Road 0.994 40 8 8 8 8 8 1 3 3 GR 

356 412 7 0 0.17 Pamela Lane 0.188 40 8 8 8 8 8 1 3 3 GR 

357 413 7 0 0.26 Patricia Ln 0.251 40 8 8 8 8 8 1 3 3 GR 

358 414 7 0 0.25 Arthur Avenue 0.250 30 8 8 8 7 7 2 3 3 GR 

359 415 7 0 0.83 Horizon Loop 0.822 30 6 8 8 6 7 1 3 3 GR 
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360 416 7 0 0.72 Orchard Drive 0.710 35 8 8 8 8 8 1 3 3 GR 

361 417 7 0 0.75 Cherry Wood Lane 0.742 35 8 8 8 8 8 1 3 3 GR 

362 418 7 0 0.36 Cherry Wine Road 0.353 30 8 8 8 8 8 1 3 3 GR 

365 419 7 0 0.3 Joe's Road 0.292 30 5 8 8 8 5 3 2 1 GR 

366 420 7 0 0.51 Bison Run Loop 0.514 30 8 8 8 8 6 3 3 3 GR 

367 421 7 0 0.2 Lupine Trail 0.190 30 9 8 8 8 8 1 3 3 GR 

369 422 7 0 0.48 Long Drive 0.482 30 7 8 7 8 8 1 3 3 GR 

370 423 7 0 0.37 Conestoga Road 0.380 30 8 8 8 8 7 1 3 3 GR 

371 424 7 0 0.63 Harvest Loop 0.632 35 7 8 8 8 6 3 3 3 GR 

374 425 7 0 0.62 823 0.626 35 7 8 8 8 7 1 3 3 GR 

375 426 7 0 0.82 Whirlaway Road 0.818 30 6 8 8 7 6 3 3 3 GR 

376 427 7 0 0.96 Affirmed Road 0.940 35 7 8 8 7 7 3 3 3 GR 

378 428 7 0 0.39 Firethorn Lane 0.400 30 8 8 8 8 8 1 3 3 GR 

379 429 7 0 0.33 Snowberry Drive 0.323 30 8 8 8 7 7 1 3 3 GR 

382 430 7 0 0.35 Swan Trail 0.350 30 8 8 7 7 7 1 3 3 GR 

383 431 7 0 0.62 878 0.612 35 7 8 8 7 7 1 3 3 GR 

384 432 7 0 0.13 879 0.136 30 9 8 8 8 8 2 3 3 GR 

385 433 7 0 0.4 894 0.406 40 7 8 7 7 8 1 3 3 GR 

386 434 7 0 0.4 895 0.407 30 8 8 8 8 8 1 3 3 GR 

387 435 7 0 0.32 896 0.322 30 8 8 8 8 8 1 3 3 GR 

388 436 7 0 0.32 898 0.322 30 9 8 8 8 8 1 3 3 GR 

389 437 7 0 0.44 899 0.445 30 8 8 8 8 6 3 3 3 GR 

390 438 7 0 0.1 901 0.099 30 9 8 8 8 8 3 3 3 GR 

391 439 7 0 0.33 902 0.326 30 8 8 8 8 8 3 3 3 GR 

393 440 7 0 1.01 Chochise Road 1.001 30 8 8 7 7 8 1 3 3 GR 

394 441 7 0 0.5 Crazy Horse Road 0.450 30 8 8 7 8 7 2 3 3 GR 

395 442 7 0 0.06 Crazy Horse Road 0.119 20 8 8 8 8 7 3 3 3 GR 

396 443 7 0 1.51 Crazy Horse Road 1.000 30 8 8 8 8 6 2 3 3 GR 

397 444 7 0 1.01 Tonto Road 0.993 30 7 8 7 7 6 1 3 3 GR 

398 445 7 0 1.01 White Eagle Road 0.990 30 8 8 8 8 6 2 3 3 GR 



117 
 

399 446 7 0 0.5 Gordon Road 0.496 30 7 8 8 7 8 2 2 2 GR 

400 447 7 0 1.01 Glencoe Road 0.991 40 8 8 8 8 8 1 3 3 GR 

401 448 7 0 0.75 Grace Rd 0.739 40 9 8 8 8 8 1 3 3 GR 

402 449 7 0 0.11 Parkhill Road 0.113 30 8 8 7 8 8 1 3 3 GR 

404 450 7 0 0.37 611 0.370 20 8 8 8 8 6 3 2 2 GR 

405 451 7 0 0.3 130-1 0.306 30 8 8 7 8 8 1 3 3 GR 

406 452 7 0 2.99 130-1 2.987 45 7 8 7 7 6 2 3 3 GR 

408 453 7 0 1.85 Stewart Road 1.833 40 8 8 8 8 8 1 3 3 GR 

409 454 7 0 3.24 East Four Mile Road 3.207 50 8 8 8 8 7 1 3 3 GR 

411 455 7 0 0.16 East Four Mile Rd U2135 0.223 30 8 8 8 8 7 3 3 3 GR 

413 456 7 0 0.27 Beartooth Drive 0.296 30 7 8 8 6 8 2 2 2 GR 

414 457 7 0 0.43 Champion Drive 0.420 30 8 8 8 7 7 1 3 3 GR 

416 458 7 0 0.12 Lynx Road 0.128 30 9 8 8 8 8 2 3 3 GR 

417 459 7 0 0.37 Bonnie Brae Loop 0.375 30 7 8 7 7 7 1 3 3 GR 

418 460 7 0 0.17 Cowboy Road 0.176 30 9 8 8 8 8 2 2 3 GR 

419 461 7 0 1.34 559 0.899 30 8 8 7 8 6 1 3 3 GR 

420 462 7 0 0.42 559 0.426 30 7 8 8 7 8 3 3 3 GR 

421 463 7 0 0.3 Lapaz Drive 0.293 30 7 8 7 8 7 3 3 3 GR 

422 464 7 0 0.82 Yarina Way 0.807 30 7 8 7 7 7 3 3 3 GR 

423 465 7 0 0.51 Ranch Road 0.502 25 8 8 8 8 7 3 3 3 GR 

424 466 7 0 0.51 Surrey Road 0.493 25 8 8 8 8 7 3 3 3 GR 

426 467 7 0 0.12 Mynear St 0.122 30 9 8 8 8 8 3 3 3 GR 

427 468 7 0 0.27 Oasis St 0.246 20 9 8 8 8 8 1 3 3 GR 

428 469 7 0 0.99 590 1.003 30 8 8 8 7 7 1 3 3 GR 

429 470 7 0 0.07 Coulter Circle 0.063 20 8 8 8 8 7 1 3 3 GR 

430 471 7 0 0.04 Scenic Ct 0.038 20 8 8 8 8 8 3 2 2 GR 

432 472 7 0 0.75 Woods Rd 0.747 35 8 8 8 8 8 1 3 3 GR 

434 473 7 0 0.76 Little Horse 0.756 30 8 8 8 8 7 1 3 3 GR 

435 474 7 0 0.51 Little Shield Road 416 0.503 30 8 8 8 8 7 1 3 3 GR 

436 475 7 0 1.02 Yellow Bear Road 1.007 30 7 8 8 7 7 1 3 3 GR 
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437 476 7 0 0.38 Avenue C-4 0.379 20 8 8 8 7 7 2 2 2 GR 

438 477 7 0 0.38 Avenue D 0.379 20 7 8 6 7 8 2 3 3 GR 

439 478 7 0 0.14 Green Ct 0.144 15 8 8 8 8 6 3 2 1 GR 

440 479 7 0 0.14 Miles Ct 0.144 15 9 8 8 8 6 3 2 1 GR 

442 480 7 0 0.33 Vera Lane 0.359 40 8 8 7 8 8 1 3 3 GR 

443 481 7 0 0.23 Green River St 0.251 30 8 8 8 8 8 3 3 3 GR 

444 482 7 0 0.17 Pierce Avenue 0.169 25 7 8 8 8 8 2 1 1 GR 

445 483 7 0 0.12 Uintah Road 0.115 30 6 8 8 8 8 3 1 1 GR 

446 484 7 0 1.01 Belmont Avenue 0.990 30 6 8 7 7 6 2 3 3 GR 

447 485 7 0 0.16 Cochise Road 0.250 30 6 8 8 8 6 2 2 3 GR 

448 486 7 0 0.16 Little Shield Road 643 0.172 30 8 8 7 8 7 2 2 3 GR 

449 487 7 0 1.02 Sitting Bull Road 1.000 40 7 8 7 7 7 1 3 3 GR 

450 488 7 0 0.12 Parsons Place 0.121 30 8 8 8 8 8 3 3 2 GR 

453 489 7 0 0.12 Foster Avenue 0.122 30 8 8 7 8 8 2 3 3 GR 

454 490 7 0 0.22 Huisman Road 0.213 25 5 8 5 8 8 3 3 1 GR 

456 491 7 0 0.75 Burns Avenue 0.738 30 7 8 8 7 6 3 3 3 GR 

457 492 7 0 0.4 Carpenter Place 0.398 30 8 8 8 8 8 3 3 2 GR 

459 493 7 0 0.29 Lander Lane 0.279 30 9 8 8 8 8 3 3 3 GR 

462 494 7 0 0.38 Jade Road 0.384 40 7 8 8 7 8 1 3 3 GR 

464 495 7 0 0.44 Maria E. Lane 0.408 40 8 8 8 8 8 1 3 3 GR 

465 496 7 0 1.01 Sherry Road 0.996 40 8 8 8 8 8 1 3 3 GR 

466 497 7 0 2.49 Spring Beauty Trail 2.446 35 7 8 7 7 6 1 2 3 GR 

467 498 7 0 0.98 Morning Glory Trail 0.963 40 9 8 8 8 8 1 3 3 GR 

468 499 7 0 0.32 Balmoral Court 0.305 30 8 8 8 8 7 3 3 2 GR 

469 500 7 0 0.15 Schrader Lane 0.143 30 8 8 8 8 7 1 3 3 GR 

470 501 7 0 0.18 North Orchard Drive 0.176 35 8 8 8 8 8 1 3 3 GR 

471 502 7 0 0.65 Choke Cherry Road 0.647 35 8 8 8 8 8 1 3 3 GR 

472 503 7 0 0.47 Cherry Blossom Road 0.473 35 7 8 8 7 8 1 3 3 GR 

473 504 7 0 0.65 Dodge Road 0.643 30 7 8 7 8 5 1 3 3 GR 

475 505 7 0 0.49 Buttercup Drive 0.478 30 7 8 8 6 8 1 3 3 GR 
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476 506 7 0 0.4 Chicakadee Drive 0.393 30 7 8 8 7 7 1 3 3 GR 

477 507 7 0 0.92 Blazing Star Road 0.907 40 7 8 8 7 7 1 3 3 GR 

478 508 7 0 0.54 Chuck Wagon Road 0.508 30 8 8 8 8 7 1 3 2 GR 

479 509 7 0 0.38 Wagon Box Road 0.380 30 8 8 8 8 8 3 3 3 GR 

480 510 7 0 0.32 Prairie Schooner Road 0.310 30 8 8 8 8 7 3 3 3 GR 

481 511 7 0 0.37 Bobcat Road 0.368 30 8 8 8 8 8 3 3 3 GR 

482 512 7 0 1.01 Jack Rabbit Road 1.002 30 8 8 8 8 7 2 3 3 GR 

484 513 7 0 0.18 Trohpy Drive 0.172 30 9 8 8 8 8 2 3 3 GR 

485 514 7 0 0.17 Brahma Road 0.166 30 9 8 8 8 8 2 2 3 GR 

486 515 7 0 0.42 Wrangler Road 0.406 30 8 8 8 7 7 1 3 3 GR 

487 516 7 0 0.18 Bonita Place 0.184 30 8 8 7 8 8 3 3 3 GR 

488 517 7 0 0.3 Shapra Road 0.293 30 8 8 7 8 8 3 3 3 GR 

489 518 7 0 0.51 Buckboard Road 0.495 25 8 8 8 8 8 3 3 3 GR 

490 519 7 0 0.51 Stagecoach Road 0.498 25 8 8 8 7 7 3 3 3 GR 

491 520 7 0 0.52 New Bedford Dr 0.507 30 8 8 8 8 6 1 3 3 GR 

492 521 7 0 0.09 Aspen Circle 0.087 20 8 8 8 8 7 2 3 3 GR 

493 522 7 0 0.21 Mynear Street 0.206 30 8 8 8 8 7 2 3 3 GR 

494 523 7 0 0.28 Skyline Drive 596 0.269 30 8 8 8 8 7 3 3 3 GR 

495 524 7 0 0.51 Archer Road 0.500 40 8 8 8 8 8 1 3 3 GR 

496 525 7 0 0.47 Citation Road 0.481 30 8 8 8 8 7 3 3 3 GR 

497 526 7 0 0.4 Secretariat Road West 0.388 30 7 8 8 6 8 2 3 3 GR 

498 527 7 0 0.38 Secretariat Road East 0.382 30 8 8 8 8 7 1 3 3 GR 

499 528 7 0 0.61 War Admiral Road 0.612 30 7 8 8 7 7 3 3 3 GR 

500 529 7 0 0.39 Arrow Wood Lane 0.400 40 8 8 8 7 7 1 3 3 GR 

501 530 7 0 0.33 Smokebrush Lane 0.323 40 8 8 8 8 7 1 3 3 GR 

502 531 7 0 0.1 Smokebrush Court 0.097 20 8 8 8 8 8 1 3 3 GR 

503 532 7 0 0.87 Lazear Ranch Road 0.875 35 7 8 8 7 7 1 3 3 GR 

504 533 7 0 0.32 Nielson Ranch Road 0.321 30 5 8 8 6 8 3 2 2 GR 

505 534 7 0 0.13 877 0.137 30 9 8 8 8 7 2 3 3 GR 

506 535 7 0 0.1 897 0.097 30 8 8 8 8 8 1 3 3 GR 
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507 536 7 0 0.4 900 0.405 35 7 8 8 7 7 3 3 3 GR 

508 537 7 0 0.1 Arroyo Road 0.099 30 9 8 8 8 8 4 3 3 GR 

510 538 7 0 0.11 Hillside Drive 0.110 30 9 8 8 8 8 4 3 3 GR 

523 539 8 0 0.14 Nash Avenue-Hillsdale 0.138 25 8 8 7 8 8 2 2 1 GR 

524 540 8 0 0.31 Dubois Road 0.323 30 8 8 8 8 8 1 2 3 GR 

526 541 8 0 0.95 Lawrence Road 0.947 30 8 8 8 8 8 1 3 3 GR 

527 542 8 0 0.86 Big Chief Road 0.855 50 8 8 8 8 8 1 3 3 GR 

528 543 8 0 0.25 Seasons Drive 0.248 50 8 8 8 7 7 2 3 3 GR 

529 544 8 0 0.89 Winterset Drive 0.883 50 8 8 8 7 7 2 3 3 GR 

530 545 8 0 0.23 Sun Down Road 0.225 40 8 8 8 8 8 2 3 3 GR 

531 546 8 0 2.06 A-145-2 2.049 50 7 8 6 8 7 2 1 1 NE 

537 547 8 0 0.95 Stuckey Road 140-2 1.046 50 8 8 8 7 8 1 3 3 NE 

538 548 8 0 2.48 Kauffman Road 2.480 50 8 8 8 7 7 1 3 3 GR 

541 549 8 0 2.01 Stuckey Road 212-6 1.994 55 8 8 7 8 7 1 2 2 GR 

542 550 8 0 4.11 Old Highay Burns East 4.066 60 9 8 8 8 6 1 3 3 GR 

546 551 8 0 0.14 Markley Avenue-Hillsdale 0.137 25 8 8 7 8 8 2 2 1 NE 

548 552 8 0 0.37 Conrad Road 0.365 25 7 8 8 6 8 1 3 3 GR 

549 553 8 0 0.3 Harding Road 0.326 30 8 8 8 8 8 1 3 2 GR 

550 554 8 0 0.86 Old Squaw Lane 0.853 50 9 8 8 8 6 1 3 3 GR 

551 555 8 0 0.86 Teal Lane 0.852 50 8 8 8 8 6 1 3 3 GR 

552 556 8 0 0.75 Autumset Drive 0.744 50 8 8 8 7 8 1 3 3 GR 

553 557 8 0 0.56 Springtime Drive 0.559 50 8 8 8 7 7 3 3 3 GR 

555 558 8 0 0.12 Jonathan Drive 0.136 35 8 8 7 8 7 1 3 3 GR 

556 559 8 0 1.06 E. and S. Cabot Road 1.048 35 8 8 8 7 8 1 3 3 GR 

558 560 8 0 0.5 Nation Road 148-3 0.506 35 7 8 7 8 6 1 2 2 NE 

559 561 8 0 1 A-150-3 0.983 60 8 8 7 8 7 1 3 3 GR 

560 562 8 0 3.04 Woolington Road 2.993 40 5 8 3 8 8 1 1 1 GR 

566 563 9 0 0.23 Central Avenue-Egbert 0.169 30 8 8 8 8 8 3 2 1 GR 

567 564 9 0 0.29 Butler Road 0.298 40 8 8 8 8 7 3 1 1 GR 

568 565 9 0 0.93 A-153-4 0.925 40 6 8 7 7 7 2 1 1 GR 
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569 566 9 0 1 Gillard Road 1.000 40 7 8 6 8 7 1 3 2 GR 

570 567 9 0 0.49 Dean Road 0.504 40 7 8 7 7 7 1 3 3 GR 

576 568 9 0 0.18 Burg Street-Egbert 0.185 30 7 8 7 7 8 3 1 1 GR 

577 569 9 0 1.5 Dunsbuergen Rd 1.474 40 8 8 8 8 8 1 3 3 GR 

578 570 9 0 1.09 A-156-3 0.996 40 7 8 7 7 7 1 3 3 GR 

580 571 10 0 0.69 A-218-1 0.715 35 7 8 8 7 7 4 3 3 TG 

581 572 10 0 1.03 A-110-2 1.027 35 7 8 8 7 8 4 3 3 GR 

583 573 10 0 0.69 Mesa Tr. North 0.705 30 8 8 8 8 8 4 3 3 GR 

584 574 10 0 0.73 Mesa Tr South 0.724 30 7 8 8 8 5 4 3 2 GR 

588 575 11 0 4.07 Atlas Road 3.936 50 8 8 8 8 8 3 3 3 GR 

591 576 11 0 0.57 Federal Blvd. 0.565 30 8 8 8 8 8 3 3 3 GR 

593 577 11 0 0.27 Palomino Lane 0.237 40 8 8 8 8 8 4 3 3 GR 

596 578 11 0 0.45 Geyser Road 0.445 30 7 8 8 7 8 3 3 3 GR 

597 579 11 0 0.58 Jackson Lake Road 0.573 30 7 8 8 7 8 3 3 3 GR 

599 580 11 0 0.92 Hummingbird Trl. 0.907 30 7 8 8 8 8 3 3 3 GR 

604 581 11 0 0.37 Guernsey Road 0.367 30 8 8 8 8 8 3 3 3 GR 

605 582 11 0 0.37 Wheatland Drive 0.367 30 8 8 8 8 8 2 3 3 GR 

606 583 11 0 1.04 Canyon Drive 1.028 30 7 8 8 7 8 3 3 3 GR 

607 584 11 0 0.55 Fishing Bridge Road 0.543 30 8 8 8 8 8 3 3 3 GR 

618 585 12 0 0.73 Packard Road 0.655 30 7 8 8 7 7 2 3 3 GR 

621 586 12 0 2.68 Hutton Road 2.656 60 8 8 8 8 8 1 3 3 GR 

623 587 12 0 0.8 Cadillac Road 0.791 30 8 8 7 8 7 1 3 3 GR 

625 588 12 0 0.33 Duesenberg Road 0.318 30 7 8 7 8 7 1 3 3 GR 

627 589 12 0 1.36 Buick Road 1.338 30 7 8 7 8 8 3 3 3 GR 

628 590 12 0 0.77 Chevy Road 0.757 30 4 8 8 6 8 2 3 3 GR 

629 591 13 0 4.44 DeSelms Road 4.468 45 7 8 6 8 5 2 2 2 GR 

632 592 13 0 0.37 Towns Road 0.336 40 7 8 7 8 8 3 1 2 NE 

634 593 13 0 1.58 Corbet Road 1.543 50 8 8 7 8 6 1 2 3 GR 

635 594 13 0 3.02 King Road South 2.980 45 8 8 7 8 8 1 3 3 NE 

636 595 13 0 1.38 A-140-4 1.384 50 8 8 8 8 7 1 3 3 GR 
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638 596 13 0 1 A-218-3 0.980 60 8 8 7 8 6 1 3 3 GR 

643 597 14 0 1.08 A-224-2 1.001 50 8 8 7 8 7 1 3 3 GR 

645 598 14 0 2.02 A-153-2 2.011 50 8 8 7 8 7 1 2 3 GR 

646 599 14 0 1.01 A-156-4 0.996 50 8 8 7 8 8 1 3 3 GR 

647 600 14 0 2.05 A-159-3 2.035 50 7 8 7 8 6 1 3 3 NE 

650 601 14 0 1.73 Mattson Road 1.714 50 7 8 7 7 6 1 3 3 NE 

651 602 14 0 1.01 Sundin Road 0.989 50 8 8 7 8 6 1 3 3 NE 

652 603 14 0 3.02 A-221-1 2.984 50 7 8 7 8 7 1 3 3 NE 

656 604 14 0 2.02 A-157-2 1.981 50 7 8 7 7 7 1 3 3 GR 

658 605 15 0 2.75 Dereemer Road 2.750 45 8 8 7 8 8 2 2 2 GR/NE 

659 606 15 0 6.73 Fisher Canyon Road 6.011 30 4 8 6 6 7 2 2 1 NE 

661 607 16 0 1.45 Whitaker Road 1.441 40 8 8 8 7 7 2 3 3 GR 

662 608 16 0 2.5 Nimmo Road 2.515 55 7 8 8 7 7 2 3 3 GR 

665 609 17 0 4.04 Sandberg Road 4.000 40 8 8 8 8 8 1 3 3 GR 

669 610 17 0 1.95 Bruegman Road 1.928 40 9 8 8 8 8 1 3 3 GR 

672 611 18 0 7.1 Eklund Road 7.034 60 8 8 7 7 7 1 3 3 GR 

673 612 18 0 1.63 Rutledge Road 1.620 45 7 8 8 7 7 1 3 2 GR 

674 613 18 0 2.04 A-147-4 2.018 45 7 8 7 7 8 1 3 2 NE 

675 614 18 0 1.02 A-228-4 1.009 45 7 8 7 7 8 1 3 2 NE 

676 615 18 0 0.64 Anderson Road 0.633 45 7 8 7 6 7 3 1 1 NE 

677 616 18 0 2.02 Debruyn Road 2.005 60 8 8 8 8 8 1 3 3 NE 

678 617 18 0 0.2 Helen Avenue 0.198 30 8 8 6 8 4 1 3 3 NE 

679 618 19 0 6.44 227-2 6.370 50 7 8 7 7 7 1 3 3 GR 

681 619 19 0 2.33 Holgerson Road 2.324 50 8 8 8 8 7 1 3 3 GR 

682 620 19 0 1.01 158-5 0.999 50 6 8 7 8 6 1 3 3 GR 

685 621 19 0 1.02 160-4 1.009 60 8 8 8 8 7 1 3 3 GR 

686 622 19 0 0.43 A-162-3 0.416 40 7 8 7 7 6 1 2 2 NE 

687 623 19 0 1.11 163-2 0.997 45 7 8 7 7 7 1 2 2 GR 

688 624 19 0 2.01 Miller Road West 226-3 1.994 50 8 8 8 8 7 1 2 2 GR 

689 625 19 0 4.07 Rabou Road 4.032 60 8 8 8 8 7 1 3 3 GR 
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690 626 19 0 1.01 West Romsa Road 1.005 50 8 8 7 8 6 1 3 3 GR 

691 627 19 0 1.89 Sorenson Road 1.936 50 8 8 7 7 7 1 3 3 GR 

692 628 19 0 2.55 Strube Road 2.563 50 8 8 8 8 7 1 3 3 GR 

693 629 19 0 2.02 A-160-3 2.001 50 7 8 8 8 7 1 3 3 GR 

695 630 19 0 6.06 Malm Road 5.997 40 7 8 7 7 7 1 2 2 NE 

697 631 20 0 2.56 McLees Road 2.560 45 8 8 8 8 8 1 3 3 NE 

698 632 21 0 5.5 A-238-4 5.634 45 5 8 7 8 7 2 3 3 NE 

699 633 21 0 1 Bliss Rd 1.066 40 7 8 8 8 8 2 3 3 GR 

702 634 21 0 2.76 Bear Creek/Marsh Road 3.016 35 6 8 5 9 7 3 3 3 NE 

703 635 22 0 9.72 Moffett Road 9.654 60 8 8 8 8 8 1 3 3 GR 

706 636 23 0 0.576 150-6 0.577 50 8 8 7 8 7 1 3 3 GR 

707 637 23 0 1.27 Beet Dump Road 1.267 40 7 8 7 7 6 1 3 3 GR 

712 638 24 0 0.86 Person Road 0.833 40 8 8 7 7 7 1 2 2 NE 

11 639 1 6.9 11.1 120-1_Seg_4 4.200 40 8 8 8 8 8 2 2 2 GR 

98 640 3 1.3 2.3 Oline Road_Seg_2 1.000 45 8 8 8 8 7 1 2 3 NE 

99 641 3 0 0.5 A-205-1_Seg_1 0.500 30 7 8 7 8 7 3 2 2 NE 

100 642 3 6 9.11 Pulver Road_Seg_2 3.110 60 9 8 8 8 8 1 3 3 GR 

111 643 3 11 17.18 Arcola Road_Seg_3 6.180 60 8 8 6 7 6 1 2 3 NE 

117 644 3 1 1.7 A-201-Seg1 0.700 45 8 8 8 8 8 1 3 3 GR 

119 645 3 0 10 Plambeck Road_Seg_1 10.000 60 9 8 8 8 6 1 3 3 GR 

119 646 3 10 16.1 Plambeck Road_Seg_2 6.100 60 8 8 7 8 8 1 3 3 GR 

119 647 3 16.1 19.1 Plambeck Road_Seg_3 3.000 60 7 8 8 7 7 1 3 3 GR 

123 648 3 0 1 Soppe Road_Seg_1 1.000 50 9 8 8 8 8 1 3 3 NE 

123 649 3 1 4.7 Soppe Road_Seg_2 3.700 60 9 8 8 8 8 1 3 3 GR 

132 650 4 0 8 154-1_Seg1 8.000 60 8 8 8 8 6 1 3 3 GR 

144 651 5 0 0.7 Ferguson Road_Seg_1 0.700 40 8 8 8 8 6 2 3 2 GR 

151 652 5 4.3 8.2 Gilchrist Road_Seg2 3.900 50 8 8 8 7 7 3 3 3 GR/TR 

151 653 5 8.2 9.4 Gilchrist Road_Seg3 1.200 50 8 8 8 8 7 4 3 3 GR 

517 654 8 0 1 Old Highway Burns West_Seg1 1.000 60 8 8 8 8 7 1 3 3 GR 

517 655 8 1 2 Old Highway Burns West_Seg2 2.000 60 8 8 8 8 8 1 3 3 GR 
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532 656 8 5 11 Tremble Road_Seg_2 6.000 50 7 8 8 8 6 2 1 2 GR 

540 657 8 0 5 Mikesell Road_Seg_1 5.000 60 9 8 8 8 6 1 3 3 NE 

540 658 8 5 10 Mikesell Road_Seg_2 5.000 60 8 8 7 7 8 2 3 3 GR 

572 659 9 0 4 A-161-3_Seg1 4.000 50 8 8 7 8 7 1 3 3 NE 

589 660 11 0 3.6 Holmes Road_Seg_1 3.600 55 7 8 8 8 8 1 3 3 GR 

614 661 12 0 3.05 Jay Road_Seg_1 3.050 45 6 8 8 8 7 1 3 3 GR 

619 662 12 14.3 16.51 Indian Hill Road 128-2_Seg_4 2.210 35 8 8 7 8 8 2 2 2 GR 

630 663 13 0 3 Lyons Road_Seg1 3.000 60 8 8 7 7 6 1 3 3 NE 

657 664 14 4.3 6.2 158-4_Seg3 1.900 40 8 8 7 8 6 1 1 1 NE 

663 665 16 4.5 9.9 Lewis Ranch/Indian Hill Road-Seg_3 5.400 25 3 8 3 8 7 3 2 3 NE 

664 666 16 0 7.78 Bristol Ridge/Hirsig Road- Seg1 7.780 60 8 8 8 7 6 1 3 3 GR 

664 667 16 15.28 19.08 Bristol Ridge/Hirsig Road- Seg3 3.800 60 8 8 8 7 7 2 3 3 GR 

667 668 17 0 5 Kirkbride Road_Seg_1 5.000 50 8 8 8 8 7 1 3 3 GR 

668 669 17 1 4 Indian Hill Road 131-3_Seg_2 3.000 60 7 8 8 8 7 1 3 3 GR 

700 670 21 0 1 Chalk Hill/Bliss Road_Seg_1 1.000 30 7 8 6 8 6 3 1 1 GR 

3 671 0 0 0.75 Jenny Lynn Road 0.761 35 6 9 8 7 6 3 3 3 GR 

5 672 0 0 1.57 Chimney Rock Loop 1.566 30 8 9 8 8 7 3 3 3 GR 

24 673 1 0 0.12 N. Avenue B-4 0.127 30 8 9 8 8 8 3 3 1 GR 

27 674 1 0 0.25 Gopp Court 0.252 30 8 9 8 8 7 3 3 3 GR 

46 675 1 0 0.12 David Court 0.105 30 8 9 8 9 8 3 3 3 GR 

147 676 5 0 1.95 Latigo Loop 1.943 45 8 9 7 9 8 3 3 3 TG 

157 677 5 0 2 Hyde Merritt Road 1.996 50 9 9 9 8 8 3 3 3 TG 

184  6 0 0.08 Pharmond Trail 0.071 20 9 9 9 9 8 3 3 3 GR 

189  6 0 0.13 Hodahlee Trail 0.126 20 8 9 8 9 7 4 3 3 GR 

205  6 0 0.1 Evan Place 0.099 10 9 9 8 9 8 4 2 3 GR 

206  6 0 0.36 E. Idaho Street 0.365 20 9 9 8 9 9 4 3 3 GR 

207  6 0 0.46 Iowa Street 0.451 25 8 9 7 9 7 4 3 3 GR 

224  6 0 0.4 Mount Meeker Road 0.389 30 8 9 9 9 6 3 3 3 GR 

227  6 0 0.28 Sherman Mountain Road 0.269 30 8 9 8 8 7 3 3 3 GR 

231  6 0 0.42 Stoneridge Drive 0.409 30 9 9 8 9 8 3 3 3 GR 
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242  6 0 0.12 Brimmer Road 0.126 15 5 9 7 9 5 4 2 3 GR 

251  6 0 0.33 Sherman Mountain Loop 0.335 25 9 9 9 9 9 4 3 3 GR 

252  6 0 0.38 Fox Ridge Drive 0.383 25 9 9 8 9 9 3 3 3 GR 

253  6 0 0.1 Barrett Road 0.098 20 9 9 8 9 8 3 2 2 GR 

263  6 0 0.18 Santa Marie Drive 0.173 30 9 9 8 9 8 3 3 3 GR 

269  6 0 0.9 Tranquility Road 0.889 30 8 9 7 8 8 4 3 3 TG 

281  6 0 0.1 Little Ridge Court 0.101 30 9 9 8 9 8 3 3 3 GR 

293  6 0 0.51 Delware Street 0.503 25 9 9 9 9 9 4 3 3 TR 

301  6 0 0.24 Buffalo Avenue 0.236 30 8 9 8 9 6 3 3 3 GR 

302  6 0 0.39 Green Mountain Road 0.382 30 8 9 8 9 6 3 3 3 GR 

303  6 0 0.49 Laughlin Road 0.472 30 8 9 8 8 7 2 3 3 GR 

306  6 0 0.48 W. Wrangler Road 0.473 30 8 9 8 9 6 3 3 3 GR 

307  6 0 0.87 Chisholm Trail 1.000 30 8 9 7 8 8 3 3 3 GR 

582  10 0 0.95 Mountain Shadow Dr 0.960 35 7 9 9 7 6 3 3 3 GR 

585  10 0 2.03 Mountain Shadow Ln 2.028 35 7 9 9 8 5 3 3 3 GR 

608  11 0 0.25 Century Road 0.250 35 9 9 8 9 8 3 3 3 GR 

132  4 12 15 154-1_Seg3 3.000 60 7 7 7 6 7 1 3 3 GR 
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